Главная > Краткий курс теоретической механики
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 101. МАССА СИСТЕМЫ. ЦЕНТР МАСС

Движение системы кроме действующих сил зависит также от ее суммарной массы и распределения масс. Масса системы (обозначаем М или ) равна арифметической сумме масс всех точек или тел, образующих систему.

распределение масс в системе определяется значениями масс ее точек и их взаимными положениями, т. е. их координатами Однако оказывается, что при решении тех задач динамики, которые мы будем рассматривать, в частности динамики твердого тела, для учета распределения масс достаточно знать не все величины , а некоторые, выражаемые через них суммарные характеристики. Ими являются: координаты центра масс (выражаются через суммы произведений масс точек системы на их координаты), осевые моменты инерции (выражаются через суммы произведений масс точек системы на квадраты их координат) и центробежные моменты инерции (выражаются через суммы произведений масс точек системы и двух из их координат). Эти характеристики мы в данной главе и рассмотрим.

Центр масс. В однородном поле тяжести, для которого g=const, вес любой частицы тела пропорционален ее массе. Поэтому о распределении масс в теле можно судить по положению его центра тяжести. Преобразуем формулы (59) из § 32, определяющие координаты центра тяжести тела, к виду, явно содержащему массу. Для этого положим в названных формулах , после чего, сократив на g, найдем:

В полученные равенства входят теперь массы материальных точек (частиц), образующих тело, и координаты этих точек. Следовательно, положение точки действительно характеризует распределение масс в теле или в любой механической системе, если под понимать соответственно массы и координаты точек системы.

Геометрическая точка С, координаты которой определяются формулами (1), называется центром масс или центром инерции механической системы.

Если положение центра масс определять его радиусом-вектором то из равенств (1) для получается формула

где — радиусы-векторы точек, образующих систему.

Из полученных результатов следует, что для твердого тела, находящегося в однородном поле тяжести, положения центра масс и центра тяжести совпадают. Но в отличие от центра тяжести понятие о центре масс сохраняет свой смысл для тела, находящегося в любом силовом поле (например, в центральном поле тяготения), и, кроме того, как характеристика распределения масс, имеет смысл не только для твердого тела, но и для любой механической системы.

Categories

1
Оглавление
email@scask.ru