§ 34. СПОСОБЫ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЦЕНТРОВ ТЯЖЕСТИ ТЕЛ
Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.
1. Если однородное тело имеет плоскость, ось или центр симметрии, то его центр тяжести лежит соответственно или в плоскости симметрии, или на оси симметрии, или в центре симметрии.
Допустим, например, что однородное тело имеет плоскость симметрии. Тогда этой плоскостью оно разбивается на две такие части, веса которых и равны друг другу, а центры тяжести находятся на одинаковых расстояниях от плоскости симметрии. Следовательно, центр тяжести тела как точка, через которую проходит равнодействующая двух равных и параллельных сил будет действительно лежать в плоскости симметрии. Аналогичный результат получается и в случаях, когда тело имеет ось или центр симметрии.
Из свойств симметрии следует, что центр тяжести однородного круглого кольца, круглой или прямоугольной пластины, прямоугольного параллелепипеда, шара и других однородных тел, имеющих центр симметрии, лежит в геометрическом центре (центре симметрии) этих тел.
2. Разбиение. Если тело можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всего тела можно непосредственно вычислить по формулам (59) — (62). При этом число слагаемых в каждой из сумм будет равно числу частей, на которые разбито тело.
Задача 45. Определить координаты центра тяжести однородной пластины, изображенной на рис. 106. Все размеры даны в сантиметрах.
Решение. Проводим оси х, у и разбиваем пластину на три прямоугольника (линии разреза показаны на рис. 106). Вычисляем координаты центров тяжести каждого из прямоугольников и их площади (см. таблицу).
Рис. 106
Рис. 107
Площадь всей пластины
Подставляя вычисленные величины в формулы (61), получаем:
Найденное положение центра тяжести С показано на чертеже; точка С оказалась вне пластины.
3. Дополнение. Этот способ является частным случаем способа разбиения. Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известныу
Задача 46. Определить положение центра тяжести круглой пластины радиуса R с вырезом радиуса (рис. 107). Расстояние
Решение. Центр тяжести пластины лежит на линии так как эта линия является осью симметрии. Проводим координатные оси. Для нахождения координаты дополняем площадь пластины до полного круга (часть 1), а затем вычитаем из полученной площади площадь вырезанного круга (часть 2). При этом площадь части 2, как вычитаемая, должна браться со знаком минус. Тогда
Подставляя найденные значения в формулы (61), получаем:
Найденный центр тяжести С, как виднм, лежнт левее точки
4. Интегрирование. Если тело нельзя разбить на несколько конечных частей, положения центров тяжести которых известны, то тело разбивают сначала на произвольные малые объемы для которых формулы (60) принимают вид
где — координаты некоторой точки, лежащей внутри объема Затем в равенствах (63) переходят к пределу, устремляя все к нулю, т. е. стягивая эти объемы в точки. Тогда стоящие в равенствах суммы обращаются в интегралы, распространенные на весь объем тела, и формулы (63) дают в пределе:
Аналогично для координат центров тяжести площадей и линий получаем в пределе из формул (61) и (62):
и
Пример применения этих формул к определению координат центра тяжести рассмотрен в следующем параграфе.
5. Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации (самолет, паровоз и т. п.) можно определять экспериментально. Один из возможных экспериментальных методов (метод подвешивания) состоит в том, что тело подвешивают на нити или тросе за различные его точки. Направление нити, на которой подвешено тело, будет каждый раз давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела. Другим возможным способом экспериментального определения центра тяжести является метод взвешивания. Идея этого метода ясна из рассмотренного ниже примера.
Пример. Покажем, как можно экспериментально определить одну из координат центра тяжести самолета (расстояние а), если расстояние (рис. 108) известно.
Рис. 108