Главная > Краткий курс теоретической механики
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 55. ТЕОРЕМА О ПРОЕКЦИЯХ СКОРОСТЕЙ ДВУХ ТОЧЕК ТЕЛА

Определение скоростей точек плоской фигуры (или тела, движущегося плоскопараллельно) с помощью формулы (52) связано обычно с довольно сложными расчетами (см. задачу 59). Однако исходя из этого основного результата, можно получить ряд других, практически более удобных и простых методов определения скоростей точек фигуры (или тела).

Рис. 149

Один из таких методов дает теорема: проекции скоростей двух точен твердого тела на ось, проходящую через эти точки, равны друг другу.

Рассмотрим какие-нибудь две точки А и В плоской фигуры (или тела). Принимая точку А за полюс (рис. 149), получаем по формуле (52), что Отсюда, проектируя обе части равенства на ось, направленную по АВ, и учитывая, что вектор перпендикулярен А В, находим

и теорема доказана. Заметим, что этот результат ясен и из чисто физических соображений: если равенство (54) не будет выполняться, то при движении расстояние между точками А и В должно изменяться, что невозможно, так как тело считается абсолютно твердым. Поэтому равенство (54) выполиася не только при плоскопараллельном, но и при любом движении твердого тела.

Доказанная теорема позволяет легко находить скорость данной точки тела, если известны направление скорости этой точки и скорость какой-нибудь другой точки того же тела.

Задача 60. Найти зависимость между скоростями точек А и В линейки эллипсографа (см. рис. 145) при данном угле

Решение. Направления скоростей точек А и В известны. Тогда, проектируя векторы на ось, направленную по АВ, получим согласно доказанной теореме

откуда

1
Оглавление
email@scask.ru