Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 80. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧРешение задач динамики точки путем интегрирования соответствующих дифференциальных уравнений движения сводится к следующим операциям. 1. Составление дифференциального уравнения движения. Для его составления в случае прямолинейного движения надо: а) выбрать начало отсчета (как правило, совмещая его с начальным положением точки) и провести координатную ось, направляя ее вдоль траектории и, как правило, в сторону движения; если под действием приложенных сил точка может находиться в каком-нибудь положении в равновесии, то начало отсчета удобно помещать в положении статического равновесия; б) изобразить двужущуюся точку в произвольном положении (но так, чтобы было в) подсчитать сумму проекций всех сил на координатную ось и подставить эту сумму в правую часть дифференциального уравнения движения; при этом надо обязательно все переменные силы выразить через те величины (t, х или v), от которых эти силы зависят. 2. Интегрирование дифференциального уравнения движения. Интегрирование производится методами, известными из курса высшей математики и зависящими от вида полученного уравнения, т. е. от вида его правой части. В тех случаях, когда на точку кроме постоянных сил действует одна переменная сила, зависящая только от времени t или только от расстояния 3. Определение постоянных интегрирования. Для определения постоянных интегрирования надо по данным задачи установить начальные условия в виде (16). Значения постоянных по начальным условиям находятся так, как это было показано в задаче 90. При этом постоянные можно определять непосредственно после каждого интегрирования. Если дифференциальное уравнение движения является уравнением с разделяющимися переменными, то вместо введения постоянных интегрирования можно брать сразу от обеих частей равенства определенные интегралы в соответствующих пределах; пример такого расчета дан в задаче 93. 4. Нахождение искомых в задаче величин и исследование полученных результатов. Чтобы иметь возможность исследовать решение, а также произвести косвенную проверку результата подсчетом размерностей, надо все решение проводить до конца в общем виде (в буквах), подставляя числовые данные только в окончательные результаты. Сделанные здесь указания относятся и к случаю криволинейного движения. Рассмотрим три конкретные задачи, в которых сила зависит от времени, от расстояния и от скорости точки. 1. Сила зависит от времени Задача 91. Груз весом Р начинает двигаться из состояния покоя вдоль гладкой горизонтальной плоскости под действием силы F, значение которой растет пропорционально времени по закону Решение. Выберем начало отсчета О в начальном положении груза и направим ось
Рис. 216 Умножив обе части этого равенства на
Подставляя сюда начальные данные, найдем, что
Умножая обе части этого равенства на
Подстановка начальных данных дает
Таким образом, проходимый грузом путь будет расти пропорционально кубу времени. 2. Сила зависит от расстояния Задача 92. Пренебрегая трением и сопротивлением воздуха, определить, в течение какого промежутка времени тело пройдет по прорытому сквозь Землю вдоль хорды АВ каналу от его начала А до конца В (рис. 217). При подсчете считать радиус Земли
Рис. 217 Указани е. В теории притяжения доказывается, что тело, находящееся внутри Земли, притягивается к ее центру с силой F, прямо пропорциональной расстоянию Принимая во внимание, что при
где Решение. Поместим начало отсчета О в середине хорды АВ (в этой точке тело, находящееся в канале, было бы в равновесии) и направим ось В произвольном положении на тело действуют силы F и N. Следовательно,
так как из чертежа видно, что Действующая сила оказалась зависящей от координаты
получим
Умножая обе части этого равенства на
По начальным условиям при
Считая, что в рассматриваемом положении скорость направлена от М к О, т. е. что
Разделяя переменные, приведем это уравнение к виду
и, интегрируя, получим
Подставляя сюда начальные данные (при
Следовательно, тело будет совершать в канале АВ гармонические колебания с амплитудой а. Найдем теперь время движения тела до конца В канала. В точке В координата
Этот очень интересный результат породил ряд (пока еще фантастических) проектов прорытия такого канала. Найдем дополнительно, чему будет равна при движении максимальная скорость тела. Из выражения для
Если, например, Колебания, совершаемые материальной точкой под действием силы, пропорциональной расстоянию, будут подробнее изучены в гл. XIX. Там будет рассмотрен другой метод интегрирования получающихся в этом случае дифференциальных уравнений движения. 3. Сила зависит от скорости Задача 93. Лодку, масса которой
Рис. 218 Решение. Совместим начало отсчета О с начальным положением лодки и направим ось Ох в сторону движения (рис. 218). Тогда начальные условия будут: при Примечание. Никакие другие силы на лодку не действуют. Сила, сообщившая лодке толчок, действовала на лодку до момента Вычисляя проекции действующих сил, находим, что
Для определения времени движения составляем дифференциальное уравнение (13), Замечая, что в данном случае
Проинтегрируем это уравнение, беря от обеих его частей после разделения переменных соответствующие определенные интегралы. При этом нижним пределом каждого из интегралов будет значение переменного интегрирования в начальный момент, а верхним — значение того же переменного в произвольный момент времени. По условиям данной задачи при
Отсюда окончательно
Искомое время
Для определения пройденного пути целесообразно вновь составить дифференциальное уравнение движения в виде (14), так как это уравнение позволяет сразу установить зависимость между х и v, Тогда получим
Отсюда, сокращая на v, разделяя переменные и учитывая, что при
Следовательно,
Полагая Чтобы найти путь, пройденный лодкой до остановки, следует в равенстве (б) положить Определяя время движения до остановки, мы из равенства (а) найдем, что при Другой интересный пример движения под действием силы, зависящей от скорости, рассмотрен в следующем параграфе.
|
1 |
Оглавление
|