Главная > Краткий курс теоретической механики
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 74. ЗАКОНЫ ДИНАМИКИ. ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ

В основе динамики лежат законы, установленные путем обобщения результатов целого ряда опытов и наблюдений, посвященных изучению движения тел, и проверенные обширной общественнопроизводственной практикой человечества. Систематически законы динамики были впервые изложены И. Ньютоном в его классическом сочинении «Математические начала натуральной философии», изданном в 1687 г. Сформулировать эти законы можно следующим образом.

Первый закон (закон инерции): изолированная от внешних воздействий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока приложенные силы не заставят ее изменить это состояние. Движение, совершаемое точкой при отсутствии сил, называется движением по инерции.

Закон инерции отражает одно из основных свойств материи - пребывать неизменно в движении. Важно отметить, что развитие динамики как науки стало возможным лишь после того, как Галилеем был открыт этот закон (1638 г.) и тем самым опровергнута господствовавшая со времен Аристотеля точка зрения о том, что движение тела может происходить только под действием силы.

Существенным является вопрос о том, по отношению к какой системе отсчета справедлив закон инерции. Ньютон предполагал, что существует некое неподвижное (абсолютное) пространство, по отношению к которому этот закон выполняется. Но по современным воззрениям пространство — это форма существования материи, и какого-то абсолютного пространства, свойства которого не зависят от движущейся в нем материи, не существует. Между тем, поскольку закон имеет опытное происхождение (еще Галилей указал, что к этому закону можно прийти, рассматривая движение шарика по наклонной плоскости со все убывающим углом наклона), должны существовать системы отсчета, в которых с той или иной степенью приближения данный закон будет выполняться. В связи с этим в механике, переходя, как обычно, к научной абстракции, вводят понятие о системе отсчета, в которой справедлив закон инерции, постулируют ее существование и называют инерциальной системой отсчета.

Можно ли данную реальную систему отсчета при решении тех или иных задач механики рассматривать как инерциальную, устанавливается путем проверки того, в какой мере результаты, полученные в предположении, что эта система является инерциальной, подтверждаются опытом. По данным опыта для нашей Солнечной системы инерциальной с высокой степенью точности можно считать систему отсчета, начало которой находится в центре Солнца, а оси направлены на так называемые неподвижные звезды. При решении большинства технических задач инерциальной, с достаточной для практики точностью, можно считать систему отсчета, жестко связанную с Землей. Справедливость этого утверждения будет обоснована в § 92.

Второй закон (основной закон динамики) устанавливает, как изменяется скорость точки при действии на нее какой-нибудь силы, а именно: произведение массы материальной точки на ускорение, которое она получает под действием данной силы, разно по модулю этой силе, а направление ускорения совпадает с направлением силы.

Математически этот закон выражается векторным равенством

При этом между модулями ускорения и силы имеет место зависимость

Второй закон динамики, как и первый, имеет место только по отношению к инерциальной системе отсчета. Из этого закона непосредственно видно, что мерой инертности материальной точки является ее масса, поскольку при действии данной силы точка, масса которой больше, т. е. более инертная, получит меньшее ускорение и наоборот.

Если на точку действует одновременно несколько сил, то они, как это следует из закона параллелограмма сил, будут эквивалентны одной силе, т. е. равнодействующей., равной геометрической сумме данных сил. Уравнение, выражающее основной закон динамики, принимает в этом случае вид

Этот же результат можно получить, используя вместо закона параллелограмма закон независимости действия сил, согласно которому при одновременном действии на точку нескольких сил каждая из них сообщает точке такое же ускорение, какое она сообщила бы, действуя одна.

Третий закон (закон равенства действия и противодействия) устанавливает характер механического взаимодействия между материальными телами. Для двух материальных точек он гласит: две материальные точки действуют друг на друга с силами, равными по модулю и направленными вдоль прямой, соединяющей эти точки, в противоположные стороны.

Этим законом мы уже пользовались в статике. Он играет большую роль в динамике системы материальных точек, как устанавливающий зависимость между действующими на эти точки внутренними силами.

При взаимодействии двух свободных материальных точек, они, согласно третьему и второму законам динамики, будут двигаться с ускорениями, обратно пропорциональными их массам.

Задачи динамики. Для свободной материальной точки задачами динамики являются следующие: 1) зная закон движения точки, определить действующую на нее силу (первая задача динамики); 2) зная действующие на точку силы, определить закон движения точки (вторая, или основная, задача динамики).

Для несвободной материальной точки, т. е. точки, на которую наложена связь, вынуждающая ее двигаться по заданной поверхности или кривой, первая задача динамики обычно состоит в том, чтобы, зная движение точки и действующие на нее активные силы, определить реакцию связи. Вторая (основная) задача динамики при несвободном движении распадается на две и состоит в том, чтобы, зная действующие на точку активные силы, определить: а) закон движения точки, б) реакцию наложенной связи.

1
Оглавление
email@scask.ru