Главная > Краткий курс теоретической механики
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 6. РАВНОВЕСИЕ СИСТЕМЫ СХОДЯЩИХСЯ СИЛ

Для равновесия системы сходящихся сил, приложенных к твердому телу, необходимо и достаточно, чтобы равнодействующая, а следовательно, и главный вектор этих сил (см. § 4) были равны нулю. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической или в аналитической форме.

1. Геометрическое условие равновесия. Так как главный вектор R системы сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил (см. рис. 15), то R может обратиться в нуль только тогда, когда конец последней силы в многоугольнике совпадает с началом первой силы, т. е. когда многоугольник замкнется.

Следовательно, для равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнутым.

2. Аналитические условия равновесия. Аналитически модуль главного вектора системы сил определяется формулой

Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно т. е., как это следует из формул (8), когда действующие на тело силы будут удовлетворять равенствам:

Равенства (11) выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы, суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия:

3. Теорема о трех силах. При решении задач статики иногда удобно пользоваться следующей теоремой: если твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке.

Для доказательства теоремы рассмотрим сначала какие-нибудь две из действующих на тело сил, например Так как по условиям теоремы эти силы лежат в одной плоскости и не параллельны, то их линии действия пересекаются в некоторой точке А (рис. 22). Приложим силы в этой точке и заменим их равнодействующей R. Тогда на тело будут действовать две силы: сила R и сила приложенная в какой-то точке В тела. Если тело при этом находится в равновесии, то силы R и должны быть направлены по одной прямой, т. е. вдоль АВ. Следовательно, линия действия силы F, тоже проходит через точку А, что и требовалось доказать.

Обратная теорема места не имеет, т. е. если линии действия трех сил пересекаются в одной точке, то тело под действием этих сил может и не находиться в равновесии; следовательно, теорема выражает только необходимое условие равновесия тела под действием трек сил.

Рис. 22

Рис. 23

Пример. Рассмотрим брус АВ, закрепленный в точке А шарниром и опирающийся на выступ D (рис. 23). На этот брус действуют три силы - сила тяжести реакция выступа и реакция RA шарнира. Так как брус находится в равновесии, то линии действия этих должны пересекаться в одной точке. Линии действия сил Р и известны и они пересекаются в точке К. Следовательно, линия действия приложенной в точке А реакции RA тоже должна пройти через точку , т. е. должна быть направлена вдоль прямой АК. Теорема о трех силах позволила в этом случае определить заранее неизвестное направление реакции шарнира А.

Categories

1
Оглавление
email@scask.ru