Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 131. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ ГИРОСКОПАРассмотрим однородное твердое тело с неподвижной точкой О, имеющее ось симметрии Oz и вращающееся вокруг этой оси с угловой скоростью Q, на много превышающей ту угловую скорость а, которую может иметь сама ось Oz при ее поворотах вместе с телом вокруг точки О; такое тело называют гироскопом.
Рис. 332
Рис. 333 Ось Простейшим примером гироскопа является детский волчок (см. ниже рис. 335). В гироскопических приборах ротор гироскопа обычно закрепляют в так называемом кардановом (кольцевом) подвесе, позволяющем ротору совершить любой поворот вокруг неподвижного центра подвеса О, совпадающего с центром тяжести ротора (рис. 332). Такой гироскоп, как и волчок, имеет три степени свободы У гироскопов, применяемых в технике, Q больше В каждый момент времени абсолютная угловая скорость гироскопа В этом и состоит основное допущение элементарной теории гироскопа. Таким образом, в дальнейшем будем считать
где 1. Свободный трехстепенной гироскоп. Рассмотрим гироскоп с тремя степенями свободы, закрепленный так, что его центр тяжести неподвижен, а ось может совершать любой поворот вокруг этого центра (см. рис. 332); такой гироскоп называют свободным. Для него, если пренебречь трением в осях подвеса, будет
Рис. 334 Сохраняя неизменное направление в звездной системе отсчета, ось свободного гироскопа по отношению к Земле будет совершать вращение в сторону, противоположную направлению вращения Земли. Таким образом, свободный гироскоп можно использовать для экспериментального обнаружения факта вращения Земли 2. Действие силы (пары сил) на ось трехстепенного гироскопа. Устойчивость оси гироскопа. Пусть на ось гироскопа (рис. 334) начинает действовать сила F, момент которой относительно центра О равен
где В — точка оси, совпадающая с концом вектора
Равенство (74) выражает следующую теорему Резаля Из равенства (74) следует, что когда действие силы прекращается, то 3. Прецессия трехстепенного гироскопа. Допустим, что сила F (или пара сил F, F, см. рис. 334) действует на гироскоп во все рассматриваемое время его движения, оставаясь в плоскости
Это уравнение является исходным приближенным уравнением элементарной (прецессионной) теории гироскопа. Из него следует, что
Чем больше В качестве примера найдем угловую скорость прецессии волчка под действием силы тяжести Р (рис. 335). Введя обозначение
Аналогичную прецессию совершает земная ось, так как вследствие отклонения формы Земли от правильной шарообразной и наклона ее оси равнодействующие сил притяжения Солнца и Луны не проходят через центр масс Земли и создают относительно этого центра некоторые моменты. Период прецессии земной оси (время одного оборота) приблизительно 26 000 лет.
Рис. 335
Рис. 336 4. Гироскоп с двумя степенями свободы. Гироскопический эффект. Рассмотрим гироскоп с ротором 3, закрепленным только в одном кольце 2, которое может вращаться по отношению к основанию 1 вокруг оси Не реагирует трехстепенной гироскоп и на вращение основания, сохраняя неизменным направление своей оси Допустим, что в некоторый момент времени основание 1 начинает вращаться вокруг оси Но когда подшипники действуют на ось ротора с силами F, F, то по третьему закону динамики и ось будет одновременно действовать на подшипники А, А с такими же по модулю и противоположными по направлению силами N, N. Пара сил N, N называется гироскопической парой, а ее момент
Отсюда получаем следующее правило Н. Е. Жуковского: если быстро вращающемуся гироскопу сообщить вынужденное прецессионное движение, то на подшипники, в которых закреплена ось ротора гироскопа, начнет действовать гироскопическая пара с моментом Мгир, стремящаяся кратчайшим путем установить ось ротора параллельно оси прецессии так, чтобы направления векторов Q и о совпали. Под действием гироскопической пары кольцо 2 начнет вращаться вместе с ротором вокруг оси Если кольцо 2 скрепить с основанием 1 жестко, т. е. так, чтобы оно не могло вращаться вокруг оси Ох, то у гироскопа останется одна степень свободы (поворот вокруг оси 5. Некоторые технические приложения гироскопа. Гироскопы используются как основной элемент в очень большом числе гироскопических приборов и устройств, имеющих самое разнообразное применение. Трехстепенные гироскопы используют в целом ряде навигационных приборов (гирокомпас, гирогоризонт, курсовой гироскоп и др.), а также в устройствах для автоматического управления движением (стабилизации) таких объектов, как самолет (автопилоты), ракеты, морские суда и др. Рассмотрим в качестве примера простейшее устройство, где трехстепенной гироскоп используется как стабилизатор (прибор Обри, стабилизирующий движение мины в горизонтальной плоскости). Прибор содержит свободный гироскоп (см. рис. 332), ось которого в момент выстрела совпадает с осью торпеды, направленной на цель. Если торпеда в некоторый момент времени отклонится от заданного направления на угол а (рис. 337), то ось гироскопа, сохраняя свое направление на цель неизменным (по свойству свободного гироскопа), окажется повернутой по отношению к корпусу торпеды на такой же угол.
Рис. 337
Рис. 338 Этот поворот с помощью специального устройства приводит в действие рулевую машину. В результате происходит поворот руля в соответствующую сторону, и торпеда выравнивается. Прибор дает пример широко используемой индикаторной системы стабилизации (стабилизатор непрямого действия), где гироскоп играет роль чувствительного элемента, регистрирующего отклонение объекта от заданного положения и передающего соответствующий сигнал двигателю, который и осуществляет стабилизацию, возвращая объект в исходное положение (например, с помощью рулей). Рассмотрим примеры использования двухстепенного гироскопа. Допустим, что ротор этого гироскопа (рис. 338) помещен в кожух 2, связанный с основанием 1 жесткой пружиной, удерживающей ротор в положении, для которого угол Примером использования двухстепенного гироскопа в качестве стабилизатора служит успокоитель качки. Он представляет собой вращающийся с угловой скоростью О ротор 1 (рис. 339). Ось Для повышения эффективности стабилизатора используют снабженный специальным регулятором двигатель, увеличивающий угловую скорость
Рис. 339
Рис. 340 Успокоитель качки дает пример силовой гироскопической стабилизации (стабилизатор прямого действия), где массивный гироскоп и регистрирует отклонение объекта от заданного положения, и осуществляет стабилизацию, а двигатель играет лишь вспомогательную роль. Рассмотрим в заключение пример определения гироскопических давлений на подшипники. Если судно, у которого ротор турбины вращается с угловой скоростью Q (рис. 340), совершает поворот с угловой скоростью
Величины этих сил могут достигать десятков килоиьютонов и должны учитываться при расчете подшипников. Через подшипники гироскопические давления передаются корпусу судна и у очень легкого судна могли бы вызвать при повороте опускание киля или носа. Подобный эффект может наблюдаться и у винтовых самолетов при виражах (поворотах в горизонтальной плоскости).
|
1 |
Оглавление
|