Главная > Краткий курс теоретической механики
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 85. ТЕОРЕМА ОБ ИЗМЕНЕНИИ МОМЕНТА КОЛИЧЕСТВА ДВИЖЕНИЯ ТОЧКИ (ТЕОРЕМА МОМЕНТОВ)

В некоторых задачах в качестве динамической характеристики движения точки вместо самого вектора количества движения рассматривают его момент относительно некоторого центра или оси.

Эти моменты определяются так же, как и моменты силы (см. § 8, 14 и 28).

Таким образом, моментом количества движения точки относительно некоторого центра О называется векторная величина то определяемая равенством

где — радиус-вектор движущейся точки, проведенный из центра О.

При этом вектор направлен перпендикулярно плоскости, проходящей через и центр (рис. 224; для сравнения на нем показан и вектор ).

Момент количества движения точки относительно какой-нибудь оси проходящей через центр О, будет равен проекции вектора на эту ось:

где — угол между вектором и осью Oz.

Теорема моментов устанавливает, как изменяется со временем вектор . Чтобы доказать ее, продифференцируем по времени выражение (35). Получим

Но как векторное произведение двух параллельных векторов, , где при действии нескольких сил . Следовательно,

В результате мы доказали следующую теорему моментов относительно центра: производная по времени от момента количества движения точки, взятого относительно какого-нибудь неподвижного центра, равна моменту действующей на точку силы относительно того же центра.

Сравнивая уравнения (37) и (32), видим, что моменты векторов и F связаны такой же зависимостью, какой связаны сами векторы

Если спроектировать обе части равенства (37) на какую-нибудь ось проходящую через центр О, то, учтя соотношение (36), получим

Это равенство выражает теорему моментов относительно оси.

Из уравнения (37) следует, что если то , т. е. если момент действующей силы относительно некоторого центра равен нулю, то момент количества движения точки относительно этого центра есть величина постоянная. Такой результат имеет место в практически важном случае движения под действием центральной силы (см. § 86).

Рис. 224

Рис. 225

Задача 97. Шарик М привязан к нити MBA, часть ВА которой продета сквозь вертикальную трубку (рис. 225). В момент, когда шарик находится на расстоянии от оси трубки, ему сообщают начальную скорость перепендикулярную плоскости MBA. Одновременно иить начинают медленно втягивать в трубку. Найти, какую скорость будет иметь шарик, когда его расстояние от оси станет равно

Решение. На шарик действуют сила тяжести Р и реакция нити Т. Моменты этих сил относительно оси равны нулю, так как сила Р параллельна оси , а сила Т эту ось пересекает. Тогда по уравнению (38)

откуда . Так как масса m постоянна, то отсюда следует, что при движении шарика

Следовательно,

По мере приближения шарика к оси его скорость растет.

1
Оглавление
email@scask.ru