Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 26. Принцип относительности ГалилеяОсновные законы динамики — законы Ньютона — справедливы в инерциальных системах отсчета. Но инерциальных систем много. В какой именно инерциальной системе отсчета рассматривается изучаемое механическое движение — совершенно безразлично. Впервые это обстоятельство было осознано Галилеем. В своей книге «Диалоги о двух системах мира — птолемеевой и коперниковой», вышедшей в свет в 1632 году, Галилей приводит описание различных механических опытов, производимых в закрытой каюте корабля, из которых следует вывод о том, что все явления происходят одинаково, независимо от того, покоится корабль или движется прямолинейно и равномерно. Равноправие инерциальных систем. Галилей рассматривал следующие простые опыты. В неподвижном корабле капли воды из подвешенного к потолку ведерка попадают в сосуд с узким горлышком, подставленный внизу. Бросая предмет по направлению к носу корабля, не придется применять большего усилия, чем бросая его на то же расстояние в сторону кормы. Прыгая в длину, вы сделаете прыжок на одно и то же расстояние независимо от его направления. При равномерном движении корабля с какой угодно скоростью в отсутствие качки во всех этих явлениях не удается обнаружить ни малейшего изменения. Например, падающие капли будут по-прежнему попадать в горлышко подставленного сосуда, несмотря на то, что за время падения капли сосуд вместе с кораблем успевает переместиться на значительное расстояние. Ни по одному из этих явлений не удастся установить, движется ли корабль или по-прежнему стоит на месте. Не помогут тут и самые тонкие механические опыты с точнейшими приборами. Итак, находясь в закрытой каюте, с помощью механических опытов невозможно определить, стоит ли корабль или движется с постоянной скоростью. Другими словами, механические явления протекают одинаково во всех инерциальных системах отсчета в том смысле, что одинаковы описывающие их законы динамики. Поэтому все инерциальные системы отсчета эквивалентны, т. е. равноправны. Это утверждение о механической эквивалентности всех инерциальных систем отсчета в механике и составляет содержание принципа относительности Галилея. Абсолютные и относительные величины. Остановимся на вопросе о равноправии инерциальных систем отсчета несколько подробнее. Вспомним про относительность механического движения, которая проявляется в том, что одно и то же движение с точки зрения разных систем отсчета выглядит по-разному. Траектория мячика, который подбрасывает и ловит находящийся в движущемся вагоне мальчик, представляется ему отрезком прямой линии, в то время как для наблюдателя на платформе станции этот мячик движется по параболе. Утверждая, что движение мячика в любой из этих систем отсчета описывается одними и теми же законами, мы имеем в виду, что уравнение второго закона Ньютона в обеих системах отсчета имеет вид
Получающееся из него выражение для скорости мячика имеет вид
а для его радиуса-вектора
При этом некоторые из входящих в эти формулы величин одинаковы во всех инерциальных системах отсчета, т. е., как говорят, абсолютны. К ним в первую очередь относится время Таким образом, уравнение (1), выражающее основной закон механического движения, удовлетворяет принципу относительности, ибо справедливо во всех инерциальных системах отсчета. Другие величины, входящие в уравнения (2) и (3), - Движение в разных системах отсчета. В рассматриваемом примере с подбрасыванием мячика единственная действующая сила — это сила тяжести С точки зрения наблюдателя, стоящего на платформе, начальная скорость подбрасываемого мячика уже не направлена вертикально: она равна векторной сумме вертикальной начальной скорости мячика относительно вагона и горизонтальной скорости вагона. Поэтому в этой системе отсчета начальная скорость мячика направлена под углом к горизонту, и он, естественно, движется по параболе. В зависимости от значения скорости V вагона это будут разные параболы. Учитывая, что сам мальчик в этой системе отсчета движется горизонтально со скоростью вагона V, нетрудно показать, что, проделав свой путь по параболе, мячик опускается точно в руки мальчика. Докажите это самостоятельно и сравните, насколько проще оказывается математическое описание данного движения в одной системе отсчета по сравнению с другой, несмотря на то, что законы этого движения в обеих системах одинаковы. Подводя итоги, можно сказать, что в разных инерциальных системах отсчета эволюция начального механического состояния происходит одинаково, по одним и тем же законам. Все различие заключается в виде начального механического состояния рассматриваемой физической системы. Именно различие начальных условий и приводит к тому, что одно и то же явление, описываемое одними и теми же законами, выглядит по-разному в разных инерциальных системах отсчета. В тех же случаях, когда в двух системах отсчета рассматриваются опыты, для которых и начальные условия совпадают, вся картина движения выглядит совершенно одинаково. Принцип относительности на практике. Принцип относительности Галилея на практике можно использовать для упрощения решения многих физических задач. Удачный выбор одной из множества возможных инерциальных систем отсчета часто позволяет превратить сложную на первый взгляд задачу в почти очевидную. Более того, принцип относительности позволяет иногда получить ответ на вопрос о явлениях, для которых нам неизвестны описывающие их конкретные законы. Задачи1. Движение по ленте транспортера. Ленга горизонтального транспортера движется с постоянной скоростью V. На ленту влетает шайба со скоростью Решение. В системе отсчета, связанной с землей, начальная скорость шайбы направлена поперек ленты, но в дальнейшем скорость не остается постоянной ни по модулю, ни по направлению. Поскольку сила сухого трения направлена противоположно скорости, то может показаться, что ускорение шайбы тоже все время меняется. А тогда уже становится совсем непонятно, как подступиться к этой задаче. Задача становится совершенно очевидной, если перейти в систему отсчета, связанную с равномерно движущейся лентой транспортера. Такая система также является инерциальной.
Рис. 106. Скорость
Рис. 107. Траектория шайбы в неподвижной системе отсчета В этой системе отсчета начальная скорость шайбы
Сила трения постоянна по модулю и по направлению, так как она направлена противоположно скорости
При этом поперек ленты транспортера шайба переместится на расстояние
Подставляя сюда
получаем
Если ширина ленты транспортера больше Какова же будет траектория шайбы относительно земли? Поскольку движение происходит с постоянным ускорением, траектория в системе отсчета, связанной с землей, представляет собой отрезок параболы, ось которой составляет угол а с краем ленты (рис. 107). В начальной точке касательная к параболе направлена поперек ленты, а в точке остановки — вдоль ленты. Так как дальше шайба движется вместе с лентой, относительно земли ее дальнейшая траектория — прямая. 2. Скорость струйки воды. Докажите, что скорость истечения воды из отверстия в стенке сосуда, находящегося в вагоне поезда, одинакова независимо от того, стоит поезд на месте или движется равномерно и прямолинейно. Решение. Для доказательства не требуется умения находить само значение скорости истечения воды. Эта скорость одинакова в обоих рассматриваемых случаях вследствие принципа относительности. Действительно, измеряя эту скорость в неподвижном и в движущемся равномерно и прямолинейно вагоне, мы получим одинаковые значения. Иначе этот опыт позволял бы обнаружить факт равномерного движения поезда, не выглядывая в окно. Однако вследствие принципа относительности это невозможно. Подобные опыты дают возможность обнаружить ускорение вагона, но не его скорость. Заметим, что скорость истечения одинакова, если в обоих случаях она измеряется в системе отсчета, связанной с вагоном. Скорость истечения воды относительно земли зависит, разумеется, от скорости вагона. • В чем заключается физическое содержание принципа относительности Галилея? • Приведите известные вам примеры явлений, подтверждающих принцип относительности. • Что конкретно имеют в виду, когда говорят, что механические явления описываются одними и теми же законами во всех инерциальных системах отсчета? Ведь для разных наблюдателей одно и то же явление может выглядеть по-разному. • Почему, находясь в закрытом купе поезда и не выглядывая в окно, можно обнаружить ускорение вагона, но не его скорость?
|
1 |
Оглавление
|