Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 32. Потенциальная энергияПонятие энергии как физической величины вводится для характеристики способности тела или системы тел к совершению работы. Как известно, существуют различные виды энергии. Наряду с уже рассмотренной выше кинетической энергией, которой обладает движущееся тело, существуют различные виды потенциальной энергии: потенциальная энергия в поле тяжести, потенциальная энергия растянутой или сжатой пружины или вообще любого упруго деформированного тела и т. д. Превращения энергии. Основное свойство энергии заключается в ее способности к превращению из одного вида в другой в эквивалентных количествах. Известные примеры таких превращений — переход потенциальной энергии в кинетическую при падении тела с высоты, переход кинетической энергий в потенциальную при подъеме брошенного вверх тела, чередующиеся взаимные превращения кинетической и потенциальной энергий при колебаниях маятника. Каждый из вас может привести массу других подобных примеров. Потенциальная энергия связана с взаимодействием тел или частей одного тела. Для последовательного введения этого понятия естественно рассмотреть систему взаимодействующих тел. Отправным пунктом здесь может служить теорема о кинетической энергии системы, определяемой как сумма кинетических энергий составляющих систему частиц:
Работа внутренних сил. Как и раньше, когда обсуждался закон сохранения импульса системы тел, будем делить действующие на тела системы силы на внешние и внутренние. По аналогии с законом изменения импульса можно было бы ожидать, что для системы материальных точек изменение кинетической энергии системы будет равно работе только внешних сил, действующих на систему. Но легко видеть, что это не так. При рассмотрении изменения полного импульса системы импульсы внутренних сил взаимно уничтожались из-за третьего закона Ньютона. Однако работы внутренних сил попарно уничтожаться не будут, так как в общем случае частицы, на которые эти силы действуют, могут совершать разные перемещения. Действительно, при вычислении импульсов внутренних сил они умножались на одно и то же время взаимодействия, а при вычислении работы эти силы умножаются на перемещения соответствующих тел, которые могут различаться. Например, если две притягивающиеся частицы переместятся навстречу друг другу, то внутренние силы их взаимодействия совершат положительные работы и их сумма будет отлична от нуля. Таким образом, работа внутренних сил может привести к изменению кинетической энергии системы. Именно благодаря этому обстоятельству механическая энергия системы взаимодействующих тел не сводится только к сумме их кинетических энергий. Полная механическая энергия системы наряду с кинетической энергией включает в себя потенциальную энергию взаимодействия частиц системы. Полная энергия зависит от положений и скоростей частиц, т. е. она представляет собой функцию механического состояния системы. Потенциальная энергия. Наряду с делением сил, действующих на частицы системы, на внешние и внутренние, для введения понятия потенциальной энергии нужно разбить все силы на две группы по другому признаку. В первую группу отнесем силы, работа которых при изменении взаимных положений частиц не зависит от способа изменения конфигурации системы, т. е. от того, по каким траекториям и в какой последовательности частицы системы перемещаются из своих начальных положений в конечные. Такие силы будем называть потенциальными. Примерами потенциальных сил могут служить силы тяготения, кулоновские силы электростатического взаимодействия заряженных частиц, упругие силы. Соответствующие силовые поля также называются потенциальными. Ко второй группе отнесем силы, работа которых зависит от формы пути. Эти силы объединим под названием непотенциальных. Наиболее характерный пример непотенциальных сил — сила трения скольжения, направленная противоположно относительной скорости. Работа в однородном поле. Потенциальная энергия количественно определяется через работу потенциальных сил. Рассмотрим, например, некоторое тело в однородном поле тяжести Земли, которую из-за ее большой массы будем считать неподвижной. В однородном поле действующая на тело сила тяжести всюду одинакова, и потому, как было показано в предыдущем параграфе, ее работа при перемещении тела не зависит от формы траектории, соединяющей начальную и конечную точки. Работа
Так как работа не зависит от формы пути, она может служить характеристикой начальной и конечной точек, т. е. характеристикой самого силового поля.
Рис. 115. Работа силы тяжести Примем какую-либо точку поля (например, ту, от которой отсчитаны высоты в формуле
Фактически это есть потенциальная энергия гравитационного взаимодействия тела и Земли, создающей это поле. Работа и потенциальная энергия. Работа силы тяжести при перемещении тела из точки 1 в точку 2, даваемая формулой (2), равна разности потенциальных энергий в начальной и конечной точках пути:
В произвольном потенциальном поле, где модуль и направление силы зависят от положения частицы, потенциальная энергия в некоторой точке Р, как и в однородном поле, равна работе силы поля при перемещении частицы из этой точки Р в начало отсчета, т. е. в фиксированную точку, потенциальная энергия в которой принята равной нулю. Выбор точки, в которой потенциальная энергия принимается равной нулю, произволен и определяется только соображениями удобства. Например, в однородном поле тяжести Земли отсчет высоты и потенциальной энергии удобно вести от поверхности Земли (уровня моря). Отмеченная неоднозначность в определении потенциальной энергии никак не сказывается на результатах при практическом использовании понятия потенциальной энергии, так как физический смысл имеет только изменение потенциальной энергии, т. е. разность ее значений в двух точках поля, через которую выражается работа сил поля при перемещении тела из одной точки в другую. Центральное поле. Покажем потенциальный характер центрального поля, в котором сила зависит только от расстояния до силового центра и направлена по радиусу. Примерами центральных полей могут служить поле тяготения планеты или любого тела со сферически-симметричным распределением масс, электростатическое поле точечного заряда и т. д. Пусть тело, на которое действует центральная сила
Но как видно из рис. 116,
Рис. 116. Работа сил центрального поля Потенциальная энергия в поле тяготения. Чтобы получить явное выражение для потенциальной энергии тела в некоторой точке поля, нужно рассчитать работу при перемещении тела из этой точки в другую, потенциальная энергия в которой принимается равной нулю. Приведем выражения для потенциальной энергии в некоторых важных случаях центральных полей. Потенциальная энергия гравитационного взаимодействия точечных масс
Разумеется, об этой энергии можно говорить и как о потенциальной энергии тела массы Для потенциальной энергии тела массы
Если высота тела
Первое слагаемое в правой части (7) можно опустить, так как оно постоянно, т. е. не зависит от положения тела. Тогда вместо (7) имеем
что совпадает с формулой (3), полученной в приближении «плоской» Земли для однородного поля тяжести. Подчеркнем, однако, что в отличие от (6) или (7) в формуле (8) потенциальная энергия отсчитывается от поверхности Земли. Задачи1. Потенциальная энергия в поле тяготения Земли. Чему равна потенциальная энергия тела на поверхности Земли и на бесконечно большом расстоянии от Земли, если принять ее равной нулю в центре Земли? Решение. Чтобы найти потенциальную энергию тела на поверхности Земли при условии, что она равна нулю в центре Земли, нужно рассчитать работу, совершаемую силой тяготения при мысленном перемещении тела с поверхности Земли в ее центр. Как было выяснено ранее (см. формулу (10) § 23), действующая на находящееся в глубине Земли тело сила тяготения пропорциональна его расстоянию
Для вычисления работы весь путь от поверхности Земли до ее центра разбиваем на малые участки, на протяжении которых силу можно считать постоянной. Работа на отдельном малом участке изображается на графике зависимости силы от расстояния (рис. 117) площадью узкой заштрихованной полоски. Эта работа положительна, так как направления силы тяжести и перемещения совпадают. Полная работа, очевидно, изображается площадью треугольника с основанием
Значение потенциальной энергии на поверхности Земли равно работе, даваемой формулой (9):
Для того чтобы найти значение потенциальной энергии на бесконечно большом расстоянии от Земли, следует учесть, что разность потенциальных энергий на бесконечности и на поверхности Земли равна, в соответствии с (6),
2. График потенциальной энергии. Постройте график потенциальной энергии тела массы Решение. Примем для определенности значение потенциальной энергии в центре Земли равным нулю.
Рис. 117. К расчету потенциальной энергии
Рис. 118. График потенциальной энергии Для любой внутренней точки, находящейся на расстоянии
Для построения графика потенциальной энергии при мулой (6), следует прибавить постоянную величину
Полный график показан на Энергия упругой деформации. К потенциальным силам относятся также и силы, возникающие при упругой деформации тел. В соответствии с законом Гука эти силы пропорциональны деформации. Поэтому потенциальная энергия упругой деформации квадратично зависит от деформации. Это становится сразу ясным, если учесть, что зависимость силы от смещения из положения равновесия здесь такая же, как и у рассмотренной выше силы тяжести, действующей на тело внутри однородного массивного шара. Например, при растяжении или сжатии на
Здесь принято, что в положении равновесия потенциальная энергия равна нулю. Потенциальная энергия в каждой точке силового поля имеет определенное значение. Поэтому она может служить характеристикой этого поля. Таким образом, силовое поле можно описать, задавая либо силу в каждой точке, либо значение потенциальной энергии. Эти способы описания потенциального силового поля эквивалентны. Связь силы и потенциальной энергии. Установим связь этих двух способов описания, т. е. общее соотношение между силой и изменением потенциальной энергии. Рассмотрим перемещение
Левую часть этого соотношения можно записать в виде произведения проекции
Проекция потенциальной силы на произвольное направление может быть найдена как взятое с обратным знаком отношение изменения потенциальной энергии при малом перемещении вдоль этого направления к модулю перемещения. Эквипотенциальные поверхности. Обоим способам описания потенциального поля можно сопоставить наглядные геометрические образы — картины силовых линий или эквипотенциальных поверхностей. Потенциальная энергия частицы в силовом поле является функцией ее координат. Приравнивая Сила в каждой точке направлена перпендикулярно проходящей через эту точку эквипотенциальной поверхности. Это легко увидеть с помощью формулы (15). В самом деле, выберем перемещение Действующая на массу
что при
Полученный результат подтверждает приведенное выше без доказательства выражение для потенциальной энергии (5). Наглядное представление о поверхностях равных значений потенциальной энергии можно составить на примере рельефа пересеченной местности. Точкам земной поверхности, находящимся на одном горизонтальном уровне, соответствуют одинаковые значения потенциальной энергии поля тяготения. Эти точки образуют непрерывные линии. На топографических картах такие линии называются горизонталями. По горизонталям легко восстановить все черты рельефа: холмы, впадины, седловины. На крутых склонах горизонтали идут гуще, ближе друг к другу, чем на пологих. В этом примере равным значениям потенциальной энергии соответствуют линии, а не поверхности, так как здесь речь идет о силовом поле, где потенциальная энергия зависит от двух координат (а не от трех). • Объясните различие между потенциальными и непотенциальными силами. • Что такое потенциальная энергия? Какие силовые поля называются потенциальными? • Получите выражение (2) для работы силы тяжести в однородном поле Земли. • С чем связана неоднозначность потенциальной энергии и почему эта неоднозначность никак не сказывается на физических результатах? • Докажите, что в потенциальном силовом поле, где работа при перемещении тела между любыми двумя точками не зависит от формы траектории, работа при перемещении тела по любому замкнутому пути равна нулю. • Получите выражение (6) для потенциальной энергии тела массы • Чемодан нельзя считать телом со сферически-симметричным распределением массы. Тем не менее при подсчете его потенциальной энергии в поле тяготения Земли можно пользоваться формулой (6). Объясните, почему. • Как зависит потенциальная энергия в поле тяготения Земли от высоты над поверхностью? Рассмотрите случаи, когда высота мала и когда она сравнима с радиусом Земли. • Укажите на графике зависимости потенциальной энергии от расстояния Вывод формулы для потенциальной энергии. Чтобы получить формулу (5) для потенциальной энергии в центральном поле тяготения, нужно вычислить работу сил поля при мысленном перемещении тела массы
Формулу (15), выражающую силу через потенциальную энергию, строго говоря, следует понимать в смысле предельного перехода, рассматривая правую часть (15) как производную от потенциальной энергии по пространственным координатам, от которых зависит потенциальная энергия. Например, проекция Градиент функции. Получающийся таким образом из скалярной функции
|
1 |
Оглавление
|