Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 46. ВолныС давних пор наглядный образ волны всегда ассоциировался с волнами на поверхности воды. Но волны на воде представляют собой значительно более сложное явление, чем многие другие волновые процессы — такие, как распространение звука в однородной изотропной среде. Поэтому естественно начинать изучение волнового движения не с волн на воде, а с более простых случаев. Волны в дискретной цепочке. Проще всего представить себе волну, распространяющуюся по бесконечной цепочке связанных маятников (рис. 192). С бесконечной цепочки мы начинаем для того, чтобы можно было рассматривать волну, распространяющуюся в одном направлении, и не думать о возможном ее отражении от конца цепочки.
Рис. 192. Волна в цепочке связанных маятников Если маятник, находящийся в начале цепочки, привести в гармоническое колебательное движение с некоторой частотой со и амплитудой А, то колебательное движение будет распространяться по цепочке. Такое распространение колебаний из одного места в другое и называется волновым процессом или волной. В отсутствие затухания любой другой маятник в цепочке будет повторять вынужденные колебания первого маятника с некоторым отставанием по фазе. Это запаздывание связано с тем, что распространение колебаний по цепочке происходит с некоторой конечной скоростью. Скорость распространения колебаний и зависит от жесткости соединяющей маятники пружинки, т. е. от того, насколько сильна связь между маятниками. Если первый маятник в цепочке движется по определенному закону, т. е. его смещение из положения равновесия есть заданная функция времени Пусть при гармонических колебаниях первого маятника его смещение из положения равновесия дается выражением
Каждый из маятников цепочки характеризуется тем расстоянием
Описываемая уравнением (2) волна называется монохроматической. Характерным признаком монохроматической волны является то, что каждый из маятников совершает синусоидальное колебание определенной частоты. Распространение волны по цепочке маятников сопровождается переносом энергии и импульса. Но никакого переноса массы при этом не происходит: каждый маятник, совершая колебания около положения равновесия, в среднем остается на месте. Поляризация волн. В зависимости от того, в каком направлении происходят колебания маятников, говорят о волнах разной поляризации. Если колебания маятников происходят вдоль направления распространения волны, как на рис. 192, то волна называется продольной, если поперек — то поперечной. Обычно волны разной поляризации распространяются с разными скоростями. Рассмотренная цепочка связанных маятников представляет собой пример механической системы с сосредоточенными параметрами.
Рис. 193. Цепочка шариков, соединенных пружинками Другой пример системы с сосредоточенными параметрами, в которой могут распространяться волны, — это цепочка шариков, связанных легкими пружинками (рис. 193). В такой системе инертные свойства сосредоточены у шариков, а упругие — у пружинок. При распространении волны кинетическая энергия колебаний локализована на шариках, а потенциальная — на пружинках. Легко сообразить, что такую цепочку соединенных пружинками шариков можно рассматривать как модель одномерной системы с распределенными параметрами, например упругой струны. В струне каждый элемент длины обладает одновременно массой, т. е. инертными свойствами, и жесткостью, т. е. упругими свойствами. Волны в натянутой струне. Рассмотрим поперечную монохроматическую волну, распространяющуюся в бесконечной натянутой струне. Предварительное натяжение струны необходимо потому, что ненатянутая гибкая струна, в отличие от твердого стержня, обладает упругостью только по отношению к деформации растяжения, но не сжатия. Монохроматическая волна в струне описывается тем же выражением (2), что и волна в цепочке маятников. Однако теперь роль отдельного маятника играет каждый элемент струны, поэтому переменная Если в формуле (2) зафиксировать
Начальная фаза колебаний этого элемента струны Длина волны. Если в формуле (2) зафиксировать
где Т — период колебаний. Картину распространения волны можно представить себе, если эту «застывшую» синусоиду привести в движение вдоль оси
Скорость поперечной волны. Определим скорость распространения монохроматической поперечной волны в струне. Будем считать, что амплитуда А мала по сравнению с длиной волны: Пусть волна бежит вправо со скоростью и. Перейдем в новую систему отсчета, движущуюся вдоль струны со скоростью, равной скорости волны и. Эта система отсчета также является инерциальной и, следовательно, в ней справедливы законы Ньютона. Из этой системы отсчета волна кажется застывшей синусоидой, а вещество струны скользит вдоль этой синусоиды влево: любой предварительно окрашенный элемент струны будет казаться убегающим вдоль синусоиды влево со скоростью и. Рассмотрим в этой системе отсчета элемент струны длины
Применим к этому элементу второй закон Ньютона. Силы, действующие на элемент со стороны соседних участков струны, показаны в выделенном кружке на рис. 196. Поскольку рассматривается поперечная волна, в которой смещения элементов струны перпендикулярны направлению распространения волны, то горизонтальная составляющая силы натяжения Скорость рассматриваемого элемента равна и и направлена влево, а малый участок его синусоидальной траектории вблизи горба можно считать дугой окружности радиуса На основании второго закона Ньютона
Учитывая, что
Это и есть искомая скорость распространения поперечной монохроматической волны малой амплитуды в натянутой струне. Видно, что она зависит только от механического напряжения натянутой струны
Рис. 197. Сложение двух монохроматических волн с близкими частотами Если в струне одновременно распространяются, например, две монохроматические волны с одинаковыми амплитудами и близкими частотами другой, в результирующей волне смещение максимально. Поскольку соответствующие отдельным волнам синусоиды бегут вдоль оси О дисперсии волн. Если скорость распространения монохроматических волн не зависит от длины волны или частоты, то говорят, что отсутствует дисперсия. Сохранение формы любой волны при ее распространении есть следствие отсутствия дисперсии. Дисперсия отсутствует для волн любого вида, распространяющихся в сплошных упругих средах. Это обстоятельство позволяет очень легко найти скорость продольных волн. Скорость продольных волн. Рассмотрим, например, длинный упругий стержень площади
Рис. 198. К расчету скорости распространения волны в струне Применим к вовлеченной за время
Действующую на массу
Длина
Подставляя это значение в (7), получаем
Скорость продольных звуковых волн в упругом стержне зависит только от модуля Юнга Е и плотности Скорость продольных волн в упругой среде всегда больше скорости поперечных. Сравним, например, скорости продольных и поперечных волн Для того чтобы сравнить эту скорость с найденной ранее скоростью поперечных волн
Таким образом, скорость поперечных волн в натянутой струне Энергия волны. При распространении волн происходит передача энергии без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц вещества и из потенциальной энергии упругой деформации среды. Рассмотрим, например, продольную волну в упругом стержне. В фиксированный момент времени кинетическая энергия распределена по объему стержня неравномерно, так как одни точки стержня в этот момент покоятся, другие, напротив, движутся с максимальной скоростью. То же самое справедливо и для потенциальной энергии, так как в этот момент какие-то элементы стержня не деформированы, другие же деформированы максимально. Поэтому при рассмотрении энергии волны естественно вводить плотность кинетической и потенциальной энергий. Плотность энергии волны в каждой точке среды не остается постоянной, а периодически изменяется при прохождении волны: энергия распространяется вместе с волной. • Почему при распространении поперечной волны в натянутой струне продольная составляющая силы натяжения струны одинакова вдоль всей струны и не изменяется при прохождении волны? • Что такое монохроматические волны? Как длина монохроматической волны связана с частотой и скоростью распространения? • В каких случаях волны называются продольными и в каких — поперечными? • Покажите с помощью качественных рассуждений, что скорость распространения волны тем больше, чем больше сила, стремящаяся возвратить возмущенный участок среды в состояние равновесия, и тем меньше, чем больше инертность этого участка. • Какими характеристиками среды определяется скорость продольных волн и скорость поперечных волн? Как связаны между собой скорости таких волн в натянутой струне? Плотность кинетической энергии бегущей волны. Рассмотрим плотность кинетической энергии в монохроматической упругой волне, описываемой уравнением (2):
Выделим в стержне малый элемент между плоскостями
Масса выделенного элемента стержня
С помощью выражения (14) находим плотность кинетической энергии
Плотность потенциальной энергии. Перейдем к вычислению плотности потенциальной энергии волны. Поскольку длина выделенного элемента стержня мала по сравнению с длиной волны, то вызываемую волной деформацию этого элемента можно считать однородной. Поэтому потенциальную энергию деформации
где Для нахождения этого удлинения нужно рассмотреть положение плоскостей, ограничивающих выделенный элемент, в некоторый момент времени
Относительное удлинение этого элемента есть
Рис. 199. К расчету относительного удлинения стержня Если в этом выражении перейти к пределу при
Теперь выражение для потенциальной энергии (16) принимает вид
а плотность потенциальной энергии
Энергия бегущей волны. Поскольку скорость распространения продольных волн Обратим внимание на то, что в отличие от локализованных колебаний (осциллятор), где кинетическая и потенциальная энергии изменяются в противофазе (см. рис. 162 и 185), в бегущей волне колебания кинетической и потенциальной энергий происходят в одинаковой фазе. Кинетическая и потенциальная энергии в каждой точке среды одновременно достигают максимальных значений и одновременно обращаются в нуль. Равенство мгновенных значений плотности кинетической и потенциальной энергий есть общее свойство бегущих волн, т. е. волн, распространяющихся в определенном направлении. Можно убедиться, что это справедливо и для поперечных волн в натянутой гибкой струне.
Рис. 200. Смещение частиц среды и плотность энергии в бегущей волне До сих пор мы рассматривали волны, распространяющиеся в системе, имеющей бесконечную протяженность только по одному направлению: в цепочке маятников, в струне, в стержне. Но волны могут распространяться и в среде, имеющей бесконечные размеры по всем направлениям. В такой сплошной среде волны бывают разного вида в зависимости от способа их возбуждения. Плоская волна. Если, например, волна возникает в результате гармонических колебаний бесконечной плоскости, то в однородной среде она распространяется в направлении, перпендикулярном этой плоскости. В такой волне смещение всех точек среды, лежащих на любой плоскости, перпендикулярной направлению распространения, происходит совершенно одинаково. Если в среде не происходит поглощения энергии волны, то амплитуда колебаний точек среды всюду одинакова и их смещение дается формулой (1). Такая волна называется плоской. Сферическая волна. Волну другого вида — сферическую — создает в однородной изотропной упругой среде пульсирующий шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Ее волновые поверхности, т. е. поверхности постоянной фазы, представляют собой концентрические сферы. В отсутствие поглощения энергии в среде легко определить зависимость амплитуды сферической волны от расстояния до центра. Поскольку поток энергии волны, пропорциональный квадрату амплитуды, одинаков через любую сферу, амплитуда волны убывает обратно пропорционально расстоянию
где а — амплитуда колебаний на расстоянии • Как зависит переносимая бегущей волной энергия от частоты и от амплитуды волны? • Что такое плоская волна? Сферическая волна? Как зависят от расстояния амплитуды плоской и сферической волн? • Объясните, почему в бегущей волне кинетическая энергия и потенциальная энергия изменяются в одинаковой фазе,
|
1 |
Оглавление
|