Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 39. Механическое равновесиеРаздел механики, в котором изучаются условия равновесия тел, называется статикой. Проще всего рассмотреть условия равновесия абсолютно твердого тела, т. е. такого тела, размеры и форму которого можно считать неизменными. Понятие абсолютно твердого тела является абстракцией, поскольку все реальные тела под влиянием приложенных к ним сил в той или иной степени деформируются, т. е. меняют свою форму и размеры. Величина деформаций зависит как от приложенных к телу сил, так и от свойств самого тела — его формы и свойств материала, из которого оно изготовлено. Во многих практически важных случаях деформации бывают малыми и использование представлений об абсолютно твердом теле является оправданным. Модель абсолютно твердого тела. Однако не всегда малость деформаций является достаточным условием для того, чтобы тело можно было считать абсолютно твердым. Чтобы пояснить это, рассмотрим следующий пример. Доска, лежащая на двух опорах (рис. 140а), может рассматриваться как абсолютно твердое тело, несмотря на то, что она слегка прогибается под действием сил тяжести. Действительно, в этом случае условия механического равновесия позволяют определить силы реакции опор Но если та же доска лежит на тех же опорах (рис. 1406), то представление об абсолютно твердом теле является неприменимым. В самом деле, пусть крайние опоры находятся на одной горизонтали, а средняя — чуть ниже. Если доска абсолютно твердая, т. е. вообще не прогибается, то она совсем не давит на среднюю опору равновесия абсолютно твердого тела в этом случае не позволяют определить силы реакции опор
Рис. 140. Силы реакции, действующие на доску, лежащую на двух (а) и на трех (б) опорах Такие системы носят название статически неопределимых. Для их расчета необходимо учитывать упругие свойства тел. Приведенный пример показывает, что применимость модели абсолютно твердого тела в статике определяется не столько свойствами самого тела, сколько условиями, в которых оно находится. Так, в рассмотренном примере даже тонкую соломинку можно считать абсолютно твердым телом, если она лежит на двух опорах. Но даже очень жесткую балку нельзя считать абсолютно твердым телом, если она лежит на трех опорах. Условия равновесия. Условия равновесия абсолютно твердого тела представляют собой частный случай динамических уравнений, когда ускорение отсутствует, хотя исторически статика возникла из потребностей строительной техники почти на два тысячелетия раньше динамики. В инерциальной системе отсчета твердое тело находится в равновесии, если векторная сумма всех действующих на тело внешних сил и векторная сумма моментов этих сил равны нулю. При выполнении первого условия равно нулю ускорение центра масс тела. При выполнении второго условия отсутствует угловое ускорение вращения. Поэтому если в начальный момент тело покоилось, то оно будет оставаться в покое и дальше. В дальнейшем мы ограничимся изучением сравнительно простых систем, в которых все действующие силы лежат в одной плоскости. В этом случае векторное условие
сводится к двум скалярным:
если расположить оси
Рис. 141. К определению направления сил реакции Силы реакции. Иногда возникают сомнения в определении направления силы реакции связи, как, например, на рис. 141, где изображен стержень, опирающийся в точке А о гладкую вогнутую поверхность чашки и в точке В на острый край чашки. Для определения направления сил реакции в этом случае можно мысленно немного подвинуть стержень, не нарушая его контакта с чашкой. Сила реакции будет направлена перпендикулярно поверхности, по которой скользит точка контакта. Так, в точке А действующая на стержень сила реакции перпендикулярна поверхности чашки, а в точке В — перпендикулярна стержню. Момент силы. Моментом М силы О называется векторное произведение радиуса-вектора
Вектор М момента силы перпендикулярен плоскости, в которой лежат векторы Уравнение моментов. Если на тело действует несколько сил, то второе, связанное с моментами сил условие равновесия записывается в виде
При этом точка О, из которой проводятся радиусы-векторы Для плоской системы сил векторы моментов всех сил направлены перпендикулярно плоскости, в которой лежат силы, если моменты рассматриваются относительно точки, лежащей в этой же плоскости. Поэтому векторное условие (4) для моментов сводится к одному скалярному: в положении равновесия алгебраическая сумма моментов всех внешних действующих сил равна нулю. Модуль момента силы силы Пример равновесия. Для иллюстрации применения условий равновесия абсолютно твердого тела рассмотрим следующий пример. Легкая лестница-стремянка состоит из двух одинаковых частей, шарнирно соединенных вверху и связанных веревкой у основания (рис. 142). Определим, какова сила натяжения веревки, с какими силами взаимодействуют половинки лестницы в шарнире и с какими силами они давят на пол, если на середине одной из них стоит человек весом Р. Рассматриваемая система состоит из двух твердых тел — половинок лестницы, и условия равновесия можно применять как для системы в целом, так и для ее частей. Применяя условия равновесия ко всей системе в целом, можно найти силы реакции пола
Условие равновесия моментов внешних сил относительно точки А записывается следующим образом:
где
Рис. 142. Векторная сумма внешних сил и сумма моментов внешних сил в равновесии равна нулю Разумеется, вместо уравнения моментов (6) относительно точки А можно было бы написать уравнение моментов относительно точки В (или любой другой точки). При этом получилась бы система уравнений, эквивалентная использованной системе (5) и (6). Сила натяжения веревки и силы взаимодействия в шарнире для рассматриваемой физической системы являются внутренними и поэтому не могут быть определены из условий равновесия всей системы как целого. Для определения этих сил необходимо рассматривать условия равновесия отдельных частей системы. При этом удачным выбором точки, относительно которой составляется уравнение моментов сил, можно добиться упрощения алгебраической системы уравнений. Так, например, в данной системе можно рассмотреть условие равновесия моментов сил, действующих на левую половинку лестницы, относительно точки С, в которой находится шарнир. При таком выборе точки С силы, действующие в шарнире, не войдут в это условие, и мы сразу находим силу натяжения веревки Т:
откуда, учитывая, что
Условие (7) означает, что равнодействующая сил Т и
Рис. 143. Линии действия всех трех сил, действующих на левую половинку лестницы, проходят через одну точку Абсолютное значение силы Золотое правило механики. Иногда задачу статики можно решить, вообще не рассматривая условий равновесия, а используя закон сохранения энергии применительно к механизмам без трения: ни один механизм не дает выигрыша в работе. Этот закон называют золотым правилом механики. Для иллюстрации такого подхода рассмотрим следующий пример: тяжелый груз весом Р подвешен на невесомом шарнире с тремя звеньями (рис. 144). Какую силу натяжения должна выдержать нить, соединяющая точки А и В?
Рис. 144. К определению силы натяжения нити в трехзвенном шарнире, поддерживающем груз весом Р Попробуем с помощью этого механизма поднимать груз Р. Отвязав нить в точке А, потянем ее вверх так, чтобы точка В медленно поднялась на расстояние
Очевидно, что для шарнира, содержащего произвольное число
Нетрудно найти силу натяжения нити и в том случае, когда требуется учитывать вес самого шарнира
Сформулированный принцип («золотое правило механики») применим и тогда, когда в процессе перемещений не происходит изменения потенциальной энергии, а механизм используется для преобразования силы. Редукторы, трансмиссии, вороты, системы рычагов и блоков — во всех таких системах преобразованную силу можно определить, приравнивая работы преобразованной и приложенной сил. Другими словами, при отсутствии трения отношение этих сил определяется только геометрией устройства. Рассмотрим с этой точки зрения разобранный выше пример со стремянкой. Конечно, использовать стремянку в качестве подъемного механизма, т. е. поднимать человека, сближая половинки стремянки, вряд ли целесообразно. Однако это не может помешать нам применить описанный метод для нахождения силы натяжения веревки. Приравнивая работу, совершаемую при сближении частей стремянки, изменению потенциальной энергии человека на стремянке и связывая из геометрических соображений перемещение
Как уже отмечалось, перемещение следует выбрать таким, чтобы в процессе его можно было считать действующую силу постоянной. Легко убедиться, что в примере с шарниром это условие не накладывает ограничений на перемещение, так как сила натяжения нити не зависит от угла Устойчивость равновесия. Равновесие бывает устойчивым, неустойчивым и безразличным. Равновесие устойчиво (рис. 146а), если при малых перемещениях тела из положения равновесия действующие силы стремятся вернуть его обратно, и неустойчиво (рис. 1466), если силы уводят его дальше от положения равновесия.
Рис. 145. Перемещения
Рис. 146. Устойчивое (а), неустойчивое (б) и безразличное (в) равновесия Если же при малых смещениях действующие на тело силы и их моменты по-прежнему уравновешиваются, то равновесие безразличное (рис. 146в). При безразличном равновесии соседние положения тела также являются равновесными. Рассмотрим примеры исследования устойчивости равновесия. 1. Устойчивому равновесию соответствует минимум потенциальной энергии тела по отношению к ее значениям в соседних положениях тела. Этим свойством часто удобно пользоваться при отыскании положения равновесия и при исследовании характера равновесия.
Рис. 147. Устойчивость равновесия тела и положение центра масс Вертикальная свободно стоящая колонна находится в устойчивом равновесии, поскольку при малых наклонах ее центр масс приподнимается. Так происходит до тех пор, пока вертикальная проекция центра масс не выйдет за пределы площади опоры, т. е. угол отклонения от вертикали не превысит некоторого максимального значения. Другими словами, область устойчивости простирается от минимума потенциальной энергии (при вертикальном положении) до ближайшего к нему максимума (рис. 147). Когда центр масс расположен точно над границей площади опоры, колонна также находится в равновесии, но неустойчивом. Горизонтально лежащей колонне соответствует гораздо более широкая область устойчивости. 2. Имеются два круглых карандаша с радиусами На первый взгляд может показаться, что равновесие верхнего карандаша вообще неустойчиво, так как центр масс верхнего карандаша лежит выше оси, вокруг которой он может поворачиваться. Однако здесь положение оси вращения не остается неизменным, поэтому этот случай требует специального исследования. Поскольку верхний карандаш уравновешен в горизонтальном положении, центры масс карандашей Отклоним верхний карандаш на некоторый угол от горизонтали. При отсутствии трения покоя он немедленно соскользнул бы вниз. Чтобы не думать пока о возможном соскальзывании, будем считать трение достаточно большим. При этом верхний карандаш «прокатывается» по нижнему без проскальзывания. Точка опоры из положения А перемещается в новое положение С, а та точка, которой верхний карандаш до отклонения опирался о нижний, переходит в положение В. Поскольку проскальзывание отсутствует, длина дуги
Рис. 148. Верхний карандаш уравновешен в горизонтальном положении на нижнем карандаше (а); к исследованию устойчивости равновесия (б) Центр масс верхнего карандаша Выразим это условие математически. Проведя вертикаль через точку В, видим, что должно выполняться условие
Так как
Поскольку Роль трения. Для ответа на второй вопрос следует выяснить, какие причины ограничивают допустимый угол отклонения. Во-первых, при больших углах отклонения вертикаль, проведенная через центр масс верхнего карандаша, может пройти правее точки опоры С. Из условия (9) видно, что при заданном отношении радиусов карандашей определяется уравнением
Рис. 149. Графическое решение уравнения Во-вторых, максимальное значение угла отклонения ограничивается трением: карандаш не должен соскальзывать, т. е. для предельного угла • Всегда ли условий равновесия твердого тела достаточно для определения сил реакции? • Как практически можно определить направление сил реакции при отсутствии трения? • Как можно использовать золотое правило механики при анализе условий равновесия? • Если в шарнире, показанном на рис. 144, нитью соединить не точки А и В, а точки Л и С, то какой будет ее сила натяжения? • Как связана устойчивость равновесия системы с ее потенциальной энергией? • Какими условиями определяется максимальный угол отклонения тела, опирающегося на плоскость в трех точках, чтобы не была утрачена его устойчивость?
|
1 |
Оглавление
|