Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 37. Столкновения частицЗаконы сохранения энергии и импульса часто позволяют гораздо проще получить ответы на некоторые вопросы, связанные с движением тел, чем непосредственное применение законов динамики. Разумеется, информация, получаемая с помощью законов сохранения, не является такой исчерпывающей, как при использовании законов динамики, но зато и получается она гораздо более легким путем. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы неизвестны. Так обстоит дело, например, в физике элементарных частиц. Законы сохранения энергии и импульса фактически являются единственным средством теоретического изучения процессов столкновения тел, когда характер действующих при столкновении сил неизвестен. Под столкновениями в физике понимают самые разнообразные процессы взаимодействия между телами при условии, что на бесконечно большом расстоянии друг от друга тела являются свободными. Когда тела проходят одно мимо другого, они взаимодействуют между собой, и результаты такого взаимодействия могут быть самыми разнообразными: тела могут соединиться вместе в одно тело (абсолютно неупругий удар), в результате соударения могут возникнуть новые тела, может случиться и так, что после взаимодействия тела вновь расходятся без изменения своего внутреннего состояния (абсолютно упругий удар). Столкновения макроскопических тел всегда в той или иной степени являются неупругими, однако в области физики атомных явлений и процессов с элементарными частицами понятие об упругом ударе играет важную роль, так как благодаря дискретному характеру энергетического спектра сталкивающихся частиц их внутреннее состояние либо не меняется вообще (упругий удар), либо скачком изменяется на конечную величину. Неупругие столкновения. Рассмотрим абсолютно неупругий удар двух тел, при котором они соединяются вместе и движутся дальше как одно тело. Слипание вместе пластилиновых шаров, застревание пули в деревянном бруске, захват нейтрона атомным ядром — все это примеры абсолютно неупругого удара. Если сталкивающиеся тела образуют замкнутую систему, в которой действуют только внутренние силы, то полный импульс системы остается неизменным. Это позволяет легко определить скорость тела, образовавшегося в результате неупругого соударения двух тел. Обозначим скорости тел с массами
получаем
Легко видеть, что определяемая формулой (1) скорость Приведенная масса. При неупругом ударе кинетическая энергия поступательного движения сталкивающихся тел убывает, частично превращаясь во внутреннюю энергию. Кинетическая энергия поступательного движения тел системы до удара
после удара
Подставляя в (2) скорость и из (1) и составляя разность кинетических энергий до и после удара, найдем
где
— так называемая приведенная масса двух тел. По существу (2) есть кинетическая энергия поступательного движения системы как целого, которая в замкнутой системе не меняется, ибо остается неизменной скорость центра масс. Поэтому (3) можно рассматривать как кинетическую энергию относительного движения сталкивающихся частиц, которая при неупругом столкновении превращается в другие виды энергии, например в теплоту. Упругие столкновения. В отличие от неупругого, при абсолютно упругом ударе сохраняется не только импульс, но и механическая энергия, так как внутреннее состояние сталкивающихся частиц после удара остается таким же, каким оно было до удара. Так как частицы до и после столкновения являются свободными, то потенциальная энергия отсутствует, и сохранение механической энергии означает сохранение кинетической энергии сталкивающихся частиц. При изучении закономерностей упругого столкновения будем для простоты считать, что одна из частиц (массы
Начнем с некоторых простых частных случаев. Прежде всего рассмотрим «лобовое» столкновение частиц, например шаров, при котором скорость
Если массы шаров одинаковы Все описанные закономерности легко наблюдать на опыте, изучая столкновения движущихся на воздушной подушке тележек, снабженных упругими пружинными бамперами. Передача энергии при ударе. Рассматривая изменение кинетической энергии шаров в результате удара, можно убедиться, что в случае равных масс происходит полный обмен энергией, в то время как при большой разнице в массах снаряд при столкновении может передать мишени лишь малую часть своей энергии. В самом деле, пусть, например, снаряд много легче мишени: Тогда, пренебрегая в знаменателе формулы (7) для
Аналогичный результат получится и в случае, если снаряд значительно тяжелее мишени В действительности лобовой удар — это большая редкость. Его относительно легко осуществить разве что при игре в бильярд, а при столкновении молекул, атомов и элементарных частиц подавляющее число ударов являются нецентральными. Если частица налетает на неподвижную частицу такой же массы, то при нецентральном упругом ударе частицы разлетаются под прямым углом друг к другу. Действительно, законы сохранения импульса и энергии (5) и (6) при
Первое из этих равенств означает, что векторы скоростей
Рис. 129. Векторы Однако законов сохранения энергии и импульса недостаточно для определения направления векторов Система центра масс. В общем случае частиц с разными массами применение законов сохранения к изучению процесса столкновения удобно интерпретировать геометрически. Для этого перейдем из лабораторной инерциальной системы отсчета, в которой частица-мишень до столкновения покоится, в другую инерциальную систему отсчета, в которой центр масс сталкивающихся частиц покоится как до столкновения, так и после. Эта система отсчета движется относительно лабораторной с такой же скоростью, как и центр масс:
так как мишень до столкновения в лабораторной системе отсчета покоится В системе центра масс движутся обе частицы — как снаряд, так и мишень. Их импульсы равны по модулю и противоположны по направлению, так что полный импульс сталкивающихся частиц в этой системе отсчета равен нулю. В силу закона сохранения импульса импульсы обеих частиц остаются равными по модулю и противоположными по направлению и после столкновения, а в силу закона сохранения энергии остаются неизменными и их модули. Тем самым в системе центра масс столкновение сводится к повороту скоростей обеих частиц, остающихся противоположно направленными и неизменными по модулю. Это изображено на рис. 130, где векторы скоростей с индексом «0» относятся к системе центра масс.
Рис. 130. Векторы скоростей частиц до и после столкновения в системе цантра масс
Построение вектора Угол Угол рассеяния. Скорость частиц в лабораторной системе отсчета можно получить из рис. 130 следующим графическим построением. Отложим вектор О А, равный скорости снаряда в системе центра масс до удара Модуль вектора В А равен т. е. когда снаряд легче мишени. Так как точка В лежит при этом внутри окружности, то угол рассеяния снаряда
Рис. 132. Максимальный угол рассеяния Видно, что в этом случае угол рассеяния частицы-снаряда
Например, при упругом рассеянии дейтронов на неподвижных протонах, когда отношение Угол разлета. Наряду с углом рассеяния
Рис. 133. В случае На рис. 133 такое построение выполнено для случая Полученные с помощью законов сохранения закономерности процессов столкновений остаются в силе и для тех случаев, когда рассматриваемая система сталкивающихся частиц, строго говоря, не является замкнутой. Необходимо лишь, чтобы внешние силы были малы по сравнению с внутренними силами, действующими во время столкновения. Тогда импульсом внешних сил за время столкновения можно пренебречь. Например, магнитное поле в камере Вильсона существенно искривляет траектории заряженных частиц до и после столкновения, однако во время столкновения действием магнитного поля можно пренебречь. Обратимость упругих столкновений. Упругие столкновения частиц, в частности столкновения молекул, обладают замечательным свойством обратимости, присущим всем консервативным системам. Представим себе, что процесс упругого соударения заснят на кинопленку. При просмотре фильма мы увидим, что частицы («молекулы») сначала сталкиваются, а затем разлетаются. Пустим теперь кинопленку в проекторе «задом наперед», т. е. в обратном направлении. Мы увидим, как частицы сходятся по траекториям, по которым они на самом деле разлетались, а затем, столкнувшись, разлетаются по траекториям, по которым они сходились. Здесь все будет происходить по тем же законам, что и в настоящем столкновении. Если заранее не знать, что пленка пущена вспять, т. е. время «обращено», то определить это с помощью законов физики не удастся. Особенно наглядно это проявляется на рисунках, где упругое столкновение изображено в системе центра масс, например на рис. 130. Отбор нужных решений. Как уже отмечалось, применение законов сохранения энергии и импульса к процессам столкновений позволяет получить ответы на некоторые вопросы даже в тех случаях, когда неизвестен закон, описывающий силы взаимодействия между частицами. Это возможно потому, что уравнения законов сохранения фактически отражают не динамику происходящих процессов, а лишь баланс некоторых физических величин, т. е. своего рода «бухгалтерию», учитывающую «доходы» и «расходы». Поэтому при интерпретации полученных из законов сохранения результатов, как правило, необходим тщательный отбор решений, имеющих физический смысл, т. е. соответствующих именно тем процессам, которые фигурируют в условии задачи. Дело в том, что одни и те же уравнения законов сохранения могут соответствовать разным физическим процессам, и поскольку этим уравнениям «невдомек», какой именно из этих процессов нас интересует, то они и «выдают» ответы для всех мыслимых случаев. Обратите внимание на это обстоятельство при разборе приводимых ниже задач. Задачи1. Столкновение альфа-частицы с протоном. Во сколько раз уменьшится скорость альфа-частицы после центрального упругого удара о неподвижный протон, масса которого Решение. При нахождении интересующего нас отношения скоростей нет необходимости в детальном описании самого процесса столкновения. Скорость альфа-частицы после того, как сталкивающиеся частицы разлетелись, может быть найдена с помощью законов сохранения. Условие задачи позволяет записать уравнения законов сохранения импульса и энергии в следующем виде:
где
Для нахождения искомого отношения скоростей
Оно имеет два корня: О физическом смысле корней уравнения. Строго говоря, оба корня квадратного уравнения (12) соответствуют еще и обратным процессам. Для корня Избежать появления корня
и разделить его почленно на уравнение (10), записанное в виде
что допустимо при
Теперь система линейных уравнений (10) и (13) имеет только один корень для 2. Лобовой удар. В момент наибольшего сближения частиц при упругом лобовом столкновении их скорости одинаковы и равны V. Каковы скорости этих частиц после разлета, если до столкновения они двигались со скоростями Решение. Поскольку по условию задачи удар лобовой, то векторы
Кинетическая энергия частиц имеет одно и то же значение только перед столкновением и после разлета. При сближении частиц кинетическая энергия частично превращается в потенциальную энергию их взаимодействия, которая при упругом столкновении затем снова превращается в кинетическую. Поэтому для закона сохранения энергии в данном случае можно написать лишь одно уравнение:
Обратим внимание на то, что в систему трех уравнений
Поскольку В системе центра масс. К ответу можно прийти без утомительных алгебраических выкладок, если решать задачу в системе центра масс. Уравнение (14) закона сохранения импульса фактически говорит о том, что скорость и представляет собой скорость движения центра масс частиц в лабораторной системе отсчета, а уравнение (15) — о том, что эта скорость остается такой же и после столкновения. Очевидно, что скорости частиц в системе центра масс до столкновения равны Обратим внимание на то, что при проведении рассуждений в системе центра масс нам не пришлось явно использовать значение отношения масс частиц у. Для ответа на соответствующий вопрос задачи его проще всего выразить через 3. Столкновение автомобилей. Примером неупругого удара может служить столкновение автомобилей. Абсолютно неупругому удару соответствует случай, когда столкнувшиеся искореженные автомобили «сцепляются» друг с другом. Почему при лобовом столкновении тяжелого грузовика с легковым автомобилем гораздо большей опасности подвергаются пассажиры легкового автомобиля? Оцените, какие перегрузки испытывают пассажиры легкового автомобиля и водитель грузового. Решение. Рассматривая такое столкновение, можно не учитывать взаимодействие автомобилей с покрытием дороги, так как силы сцепления колес с дорогой гораздо меньше сил, возникающих при деформации автомобилей. Другими словами, в этой задаче систему можно считать замкнутой, как если бы все это происходило на обледенелой дороге. Силы взаимодействия колес с дорогой определяют лишь время, в течение которого сцепившиеся автомобили продолжают двигаться до полной остановки. Но для ответа на вопросы задачи важно отнюдь не это время, а время, в течение которого выравниваются скорости сталкивающихся автомобилей. Попробуем оценить это время. Предположим, что грузовик двигался со скоростью
Дальнейшие рассуждения удобно проводить в системе отсчета, связанной с центром масс автомобилей, так как скорость центра масс за время удара
В справедливости этих выражений можно убедиться, учитывая, что модули импульсов автомобилей в системе центра масс одинаковы. Если различие в массах велико, так что Отсюда видно, что ускорение у легкового автомобиля при ударе будет гораздо больше, чем у грузовика, так как скорости Роль привязных ремней. Еще большей опасности подвергаются пассажиры, когда привязные ремни не надеты. В этом случае пассажир не почувствует никакой силы, пока не ударится о приборный щиток или ветровое стекло. В результате ему придется остановиться не за • Вещество для замедления нейтронов в ядерных реакторах должно быть таким, чтобы его ядра не поглощали нейтронов. В частности, свинец и тяжелая вода почти не поглощают нейтроны. Почему же для замедления быстрых нейтронов используют дорогую тяжелую воду и не используют гораздо более дешевый свинец? • Какие ограничения накладывают законы сохранения на угол рассеяния и на угол разлета при упругом столкновении движущейся частицы с неподвижной? • Выполните построение векторов скоростей • Почему при решении задачи 2 в системе центра масс не появляются посторонние решения • При неупругом ударе, например при лобовом столкновении автомобилей, кинетическая энергия частично идет на совершение работы по их деформации. Докажите, что при большом различии масс автомобилей эта «потерянная» энергия практически совпадает с первоначальной кинетической энергией легкого автомобиля.
|
1 |
Оглавление
|