Главная > Физика для углубленного изучения 1. Механика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 5. Одновременные перемещения. Сложение перемещений

Мы знаем, как складываются перемещения, происходящие последовательно. А как складываются перемещения, когда тело одновременно участвует в нескольких движениях? Рассмотрим следующий пример. Паром переправляет пассажиров с одного берега фиорда на другой. Стоящий в его левом углу пассажир совершает вместе с паромом перемещение а относительно берегов и попадает из точки А в точку (рис. 10а). Если бы паром стоял на месте,

а человек пересек бы его наискосок, то он совершил бы относительно берегов перемещение и попал бы из точки А в точку (рис. 10 б). А теперь рассмотрим такую ситуацию: паром пересекает фиорд, а человек в это время пересекает паром наискосок.

Рис. 10. Пример сложения одновременных перемещений (переправа на пароме)

Где он окажется в результате одновременного участия в этих двух движениях? Опыт показывает, что человек попадет в точку т. е. совершит относительно берегов перемещение с, равное сумме векторов а и (рис. 10 в). В физике это утверждение иногда называют принципом независимости перемещений.

Независимость перемещений. Такой же результат получится и в случае, когда сначала паром пересечет фиорд и только после его причаливания пассажир пересечет паром наискосок, и в случае, когда сначала человек пересечет наискосок неподвижный паром и только затем паром переправит его на другой берег. Во всех этих случаях человек попадет в одну и ту же точку Его результирующее перемещение относительно берегов будет одним и тем же независимо от последовательности выполнения отдельных составляющих перемещений. С математической точки зрения это означает, что векторное сложение перемещений коммутативно — его результат не зависит от порядка слагаемых: .

Задача

Переправа на пароме. Ширина фиорда Квадратный паром со стороной переправляется поперек фиорда. За время переправы пассажир, двигаясь из точки А (рис. 11) наискосок парома, успевает дойти до его середины. Найдите перемещение пассажира относительно берегов.

Решение. Если бы паром стоял на месте, то перемещение пассажира изображалось бы вектором проведенным из угла А квадрата в его центр (рис. 11). Очевидно, что он направлен под углом 45° к берегу, а его модуль

равен Перемещение самого парома изображается вектором а, перпендикулярным берегу. Его модуль

Результирующее перемещение пассажира изображается вектором с, проведенным по диагонали параллелограмма, построенного на векторах а и Из рис. 11 видно, что его модуль проще находить не как длину диагонали, а как гипотенузу прямоугольного треугольника с катетами

По теореме Пифагора

Направление вектора с можно определить, вычислив значение синуса угла а (рис. 11), образуемого вектором с и перпендикуляром к береговой линии:

Рис. 11. Сложение перемещений при переправе на пароме

Поскольку то его значение приближенно совпадает с самим углом а в радианной мере. Умножая это значение на находим а

Приведите примеры сложения перемещений, когда тело одновременно участвует в нескольких движениях.

Зависит ли результат сложения трех и большего числа перемещений от последовательности, в которой производится их сложение? Проверьте ваш ответ на каком-либо конкретном примере.

Геометрия и опыт. Зачем нужна была ссылка на опыт при утверждении, что результирующее перемещение тела, участвующего в двух движениях, равно векторной сумме составляющих перемещений? Разве это не очевидно с самого начала? Когда мы говорим о сложении векторов, то имеем в виду правила действий, определяемые в евклидовой геометрии. Опыт, о котором идет речь, фактически служит проверкой того, что геометрия реального физического пространства является евклидовой.

Нужно ли проверять на опыте справедливость евклидовой геометрии? Правильность математической теории, в частности геометрии Евклида, определяется ее внутренней непротиворечивостью, устанавливаемой чисто логическим путем. Ссылки на опыт здесь не нужны. В противоположность «чистой» математике, где величины по определению обладают теми свойствами, которые им произвольно приписаны, в физике необходимо не приписывать, а экспериментально открывать отдельные объективно существующие свойства.

Физические величины определяются прежде всего по тем признакам, по которым мы распознаем их, сталкиваясь с ними при наблюдении окружающего мира. Вместо абстрактных

геометрических понятий точки, прямой линии и т. д. в физике приходится иметь дело с их материальными воплощениями. Например, прямой линии сопоставляется луч света — узкий световой пучок.

Геометрические представления имеют для физики принципиальное значение. С ними связан вопрос о физических свойствах реального мира: можно ли в физических измерениях предполагать, что справедливы аксиомы и теоремы евклидовой геометрии? Такой вопрос не возникал, пока геометрия Евклида была единственной известной геометрией и ее применимость к физическому пространству считалась самоочевидной. Однако уже в XIX веке выяснилось, что возможно существование и других геометрий, основанных на наборах аксиом, отличных от аксиом, на которых зиждется геометрия Евклида.

Искривленное пространство. Для того чтобы понять, в чем могут заключаться отличия геометрии пространства от евклидовой геометрии, вообразим себе, каким представлялся бы мир гипотетическим разумным двумерным существам, живущим во вселенной, которая представляет собой поверхность шара. Трехмерное пространство, в котором находится этот шар, им так же трудно себе представить, как нам — четырехмерное пространство.

Рис. 12. В сферическом треугольнике сумма углов превышает

Что представляет собой геометрия искривленного двумерного пространства, в котором они живут? Аналогом прямых линий служат дуги больших кругов, так как именно они реализуют кратчайшее расстояние на поверхности шара между двумя ее точками: вообразим себе нить, натянутую между двумя точками на глобусе. Из таких «прямых» можно строить треугольники. Легко убедиться в том, что сумма углов в таких треугольниках всегда больше Проще всего это увидеть для треугольника, одна из сторон которого представляет собой часть экватора на рис. 12), а две другие стороны — части меридианов.

Могут ли наши воображаемые существа установить отличие геометрии своего двумерного мира от евклидовой, не «выходя» за его пределы, т. е. в трехмерное пространство? Ответ очевиден: конечно, могут, для этого им достаточно выполнить тщательное измерение углов какого-либо треугольника и убедиться, что сумма этих углов не равна

В геометрии искривленного двумерного мира сумма двух последовательных перемещений зависит от порядка слагаемых. Например, на глобусе из некоторой точки экватора пройдем расстояние, равное одной пятой части меридиана, сначала на север, а затем на восток. Если же сначала пройти такое расстояние на восток, а потом повернуть на север, то в итоге мы попадем в совершенно другую точку глобуса.

Трехмерное пространство, как и рассмотренное двумерное, также может быть искривленным, описываемым неевклидовой геометрией. Поэтому только на опыте может быть решен вопрос о том, какова геометрия реального трехмерного физического пространства. Первым это осознал гениальный немецкий ученый Карл Фридрих Гаусс, который еще в 1821 — 1823 гг. предпринял попытки с помощью геодезических приборов найти сумму углов треугольника, образованного удаленными вершинами трех гор. Ни в этих, ни во всех последующих экспериментах отклонения геометрии физического пространства от евклидовой не было обнаружено.

• Будет ли для прямоугольного треугольника на двумерной искривленной поверхности справедлива теорема Пифагора?

• При каких условиях нашим двумерным существам было бы трудно обнаружить на опыте искривление своего пространства?

• Мы живем на поверхности земного шара, т. е. фактически в тех же условиях, что и наши воображаемые двумерные существа. Как же мы можем утверждать, что геометрия реального физического пространства евклидова?

1
Оглавление
email@scask.ru