Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. Одновременные перемещения. Сложение перемещенийМы знаем, как складываются перемещения, происходящие последовательно. А как складываются перемещения, когда тело одновременно участвует в нескольких движениях? Рассмотрим следующий пример. Паром переправляет пассажиров с одного берега фиорда на другой. Стоящий в его левом углу пассажир совершает вместе с паромом перемещение а относительно берегов и попадает из точки А в точку а человек пересек бы его наискосок, то он совершил бы относительно берегов перемещение
Рис. 10. Пример сложения одновременных перемещений (переправа на пароме) Где он окажется в результате одновременного участия в этих двух движениях? Опыт показывает, что человек попадет в точку Независимость перемещений. Такой же результат получится и в случае, когда сначала паром пересечет фиорд и только после его причаливания пассажир пересечет паром наискосок, и в случае, когда сначала человек пересечет наискосок неподвижный паром и только затем паром переправит его на другой берег. Во всех этих случаях человек попадет в одну и ту же точку ЗадачаПереправа на пароме. Ширина фиорда Решение. Если бы паром стоял на месте, то перемещение пассажира изображалось бы вектором равен Результирующее перемещение пассажира изображается вектором с, проведенным по диагонали параллелограмма, построенного на векторах а и
Направление вектора с можно определить, вычислив значение синуса угла а (рис. 11), образуемого вектором с и перпендикуляром к береговой линии:
Рис. 11. Сложение перемещений при переправе на пароме Поскольку Приведите примеры сложения перемещений, когда тело одновременно участвует в нескольких движениях. Зависит ли результат сложения трех и большего числа перемещений от последовательности, в которой производится их сложение? Проверьте ваш ответ на каком-либо конкретном примере. Геометрия и опыт. Зачем нужна была ссылка на опыт при утверждении, что результирующее перемещение тела, участвующего в двух движениях, равно векторной сумме составляющих перемещений? Разве это не очевидно с самого начала? Когда мы говорим о сложении векторов, то имеем в виду правила действий, определяемые в евклидовой геометрии. Опыт, о котором идет речь, фактически служит проверкой того, что геометрия реального физического пространства является евклидовой. Нужно ли проверять на опыте справедливость евклидовой геометрии? Правильность математической теории, в частности геометрии Евклида, определяется ее внутренней непротиворечивостью, устанавливаемой чисто логическим путем. Ссылки на опыт здесь не нужны. В противоположность «чистой» математике, где величины по определению обладают теми свойствами, которые им произвольно приписаны, в физике необходимо не приписывать, а экспериментально открывать отдельные объективно существующие свойства. Физические величины определяются прежде всего по тем признакам, по которым мы распознаем их, сталкиваясь с ними при наблюдении окружающего мира. Вместо абстрактных геометрических понятий точки, прямой линии и т. д. в физике приходится иметь дело с их материальными воплощениями. Например, прямой линии сопоставляется луч света — узкий световой пучок. Геометрические представления имеют для физики принципиальное значение. С ними связан вопрос о физических свойствах реального мира: можно ли в физических измерениях предполагать, что справедливы аксиомы и теоремы евклидовой геометрии? Такой вопрос не возникал, пока геометрия Евклида была единственной известной геометрией и ее применимость к физическому пространству считалась самоочевидной. Однако уже в XIX веке выяснилось, что возможно существование и других геометрий, основанных на наборах аксиом, отличных от аксиом, на которых зиждется геометрия Евклида. Искривленное пространство. Для того чтобы понять, в чем могут заключаться отличия геометрии пространства от евклидовой геометрии, вообразим себе, каким представлялся бы мир гипотетическим разумным двумерным существам, живущим во вселенной, которая представляет собой поверхность шара. Трехмерное пространство, в котором находится этот шар, им так же трудно себе представить, как нам — четырехмерное пространство.
Рис. 12. В сферическом треугольнике Что представляет собой геометрия искривленного двумерного пространства, в котором они живут? Аналогом прямых линий служат дуги больших кругов, так как именно они реализуют кратчайшее расстояние на поверхности шара между двумя ее точками: вообразим себе нить, натянутую между двумя точками на глобусе. Из таких «прямых» можно строить треугольники. Легко убедиться в том, что сумма углов в таких треугольниках всегда больше Могут ли наши воображаемые существа установить отличие геометрии своего двумерного мира от евклидовой, не «выходя» за его пределы, т. е. в трехмерное пространство? Ответ очевиден: конечно, могут, для этого им достаточно выполнить тщательное измерение углов какого-либо треугольника и убедиться, что сумма этих углов не равна В геометрии искривленного двумерного мира сумма двух последовательных перемещений зависит от порядка слагаемых. Например, на глобусе из некоторой точки экватора пройдем расстояние, равное одной пятой части меридиана, сначала на север, а затем на восток. Если же сначала пройти такое расстояние на восток, а потом повернуть на север, то в итоге мы попадем в совершенно другую точку глобуса. Трехмерное пространство, как и рассмотренное двумерное, также может быть искривленным, описываемым неевклидовой геометрией. Поэтому только на опыте может быть решен вопрос о том, какова геометрия реального трехмерного физического пространства. Первым это осознал гениальный немецкий ученый Карл Фридрих Гаусс, который еще в 1821 — 1823 гг. предпринял попытки с помощью геодезических приборов найти сумму углов треугольника, образованного удаленными вершинами трех гор. Ни в этих, ни во всех последующих экспериментах отклонения геометрии физического пространства от евклидовой не было обнаружено. • Будет ли для прямоугольного треугольника на двумерной искривленной поверхности справедлива теорема Пифагора? • При каких условиях нашим двумерным существам было бы трудно обнаружить на опыте искривление своего пространства? • Мы живем на поверхности земного шара, т. е. фактически в тех же условиях, что и наши воображаемые двумерные существа. Как же мы можем утверждать, что геометрия реального физического пространства евклидова?
|
1 |
Оглавление
|