Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
19.3. Поток событий. Простейший поток и его свойстваПод потоком событий в
теории вероятностей понимается последовательность событий, происходящих одно за
другим в какие-то моменты времени. Примерами могут служить: поток вызовов на
телефонной станции; поток включений приборов в бытовой электросети; поток
заказных писем, поступающих в почтовое отделение; поток сбоев (неисправностей)
электронной вычислительной машины; поток выстрелов, направляемых на цель во
время обстрела, и т. п. События, образующие поток, в общем случае могут быть
различными, но здесь мы будем рассматривать лишь поток однородных событий,
различающихся только моментами появления. Такой поток можно изобразить как
последовательность точек
Рис. 19.3.1. Поток событий называется регулярным, если события следуют одно за другим через строго определенные промежутки времени. Такой поток сравнительно редко встречается в реальных системах, но представляет интерес как предельный случай. Типичным для системы массового обслуживания является случайный поток заявок. В настоящем 1. Поток событий называется стационарным,
если вероятность попадания того или иного числа событий на участок времени
длиной 2. Поток событий называется потоком без последействия, если для любых неперекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие. 3. Поток событий называется ординарным,
если вероятность попадания на элементарный участок Если поток событий обладает всеми
тремя свойствами (т. е. стационарен, ординарен и не имеет последействия), то он
называется простейшим (или стационарным пуассоновским) потоком. Название
«пуассоновский» связано с тем, что при соблюдении условий 1-3 число событий,
попадающих на любой фиксированный интервал времени, будет распределено по
закону Пуассона (см. Рассмотрим подробнее условия 1-3, посмотрим, чему они соответствуют для потока заявок и за счет чего они могут нарушаться. 1. Условию стационарности удовлетворяет поток заявок, вероятностные характеристики которого не зависят от времени. В частности, для стационарного потока характерна постоянная плотность (среднее число заявок в единицу времени). На практике часто встречаются потоки заявок, которые (по крайней мере, на ограниченном отрезке времени) могут рассматриваться как стационарные. Например, поток вызовов на городской телефонной станции на участке времени от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не может считаться стационарным (ночью плотность вызовов значительно меньше, чем днем). Заметим, что так обстоит дело и со всеми физическими процессами, которые мы называем «стационарными»: в действительности все они стационарны лишь на ограниченном участке времени, а распространение этого участка до бесконечности - лишь удобный прием, применяемый в целях упрощения анализа. Во многих задачах теории массового обслуживания представляет интерес проанализировать работу системы при постоянных условиях; тогда задача решается для стационарного потока заявок. 2. Условие отсутствия последействия - наиболее существенное для простейшего потока - означает, что заявки поступают в систему независимо друг от друга. Например, поток пассажиров, входящие на станцию метро, можно считать потоком без последействия потому, что причины, обусловившие приход отдельного пассажира именно в тот, а не другой момент, как правило, не связаны с аналогичными причинами для других пассажиров. Однако условие отсутствия последействия может быть легко нарушено за счет появления такой зависимости. Например, поток пассажиров, покидающих станцию метро, уже не может считаться потоком без последействия, так как моменты выхода пассажиров, прибывших одним и тем же поездом, зависимы между собой. Вообще нужно заметить, что
выходной поток (или поток обслуженных заявок), покидающий систему массового
обслуживания, обычно имеет последействие, даже если входной поток его не имеет.
Чтобы убедиться в этом, рассмотрим одноканальную систему массового
обслуживания, для которой время обслуживания одной заявки вполне определено и
равно Последействие, присущее выходному потоку, необходимо учитывать, если этот поток является входным для какой-либо другой системы массового обслуживания (так называемое «многофазовое обслуживание», когда одна и та же заявка последовательно переходит из системы в систему). Отметим, между прочим, что самый простой на первый взгляд регулярный поток, в котором события отделены друг от друга равными интервалами, отнюдь не является «простейшим» в нашем смысле слова, так как в нем имеется ярко выраженное последействие: моменты появления следующих друг за другом событий связаны жесткой, функциональной зависимостью. Именно из-за наличия последействия анализ процессов, протекающих в системе массового обслуживания при регулярном потоке заявок, гораздо сложнее, чем при простейшем. 3. Условие ординарности означает, что заявки приходят поодиночке, а не парами, тройками и т. д. Например, поток атак, которому подвергается воздушная цель в зоне действия истребительной авиации, будет ординарным, если истребители атакуют цель поодиночке, и не будет ординарным, если истребители идут в атаку парами. Поток клиентов, входящих в парикмахерскую, может считаться практически ординарным, чего нельзя сказать о потоке клиентов, направляющихся в ЗАГС для регистрации брака. Если в неординарном потоке заявки поступают только парами, только тройками и т. д., то неординарный поток легко свести к ординарному; для этого достаточно вместо потока отдельных заявок рассмотреть поток пар, троек и т. д. Сложнее будет, если каждая заявка случайным образом может оказаться двойной, тройной и т. д. Тогда уже приходится иметь дело с потоком не однородных, а разнородных событий. В дальнейшем мы для простоты ограничимся рассмотрением ординарных потоков. Простейший поток играет среди потоков событий вообще особую роль, до некоторой степени аналогичную роли нормального закона среди других законов распределения. Мы знаем, что при суммировании большого числа независимых случайных величин, подчиненных практически любым законам распределения, получается величина, приближенно распределенная по нормальному закону. Аналогично можно доказать, что при суммировании (взаимном наложении) большого числа ординарных, стационарных потоков с практически любым последействием получается поток, сколь угодно близкий к простейшему. Условия, которые должны для этого соблюдаться, аналогичны условиям центральной предельной теоремы, а именно - складываемые потоки должны оказывать на сумму приблизительно равномерно малое влияние. Не доказывая этого положения и
даже не формулируя математически условия, которым должны удовлетворять потоки,
проиллюстрируем его элементарными рассуждениями. Пусть имеется ряд независимых
потоков
Рис. 19.3.2. Предположим, что потоки
на
оси На практике оказывается обычно достаточно сложить 4-5 потоков, чтобы получить поток, с которым можно оперировать как с простейшим. Простейший поток играет в теории массового обслуживания особенно важную роль. Во-первых, простейшие и близкие к простейшим потоки заявок часто встречаются на практике (причины этого изложены выше). Во-вторых, даже при потоке заявок, отличающемся от простейшего, часто можно получить удовлетворительные по точности результаты, заменив поток любой структуры простейшим с той же плотностью. Поэтому займемся подробнее простейшим потоком и его свойствами. Рассмотрим на оси
Рис. 19.3.3. Выделим произвольный участок
времени длиной
где
Вероятность того, что за время
В частности, вероятность того, что участок окажется пустым (не произойдет ни одного события), будет
Важной характеристикой потока
является закон распределения длины промежутка между соседними событиями.
Рассмотрим случайную величину
Перейдем к вероятности противоположного события
Это
есть вероятность того, что на участке времени длиной
откуда
Дифференцируя, найдем плотность распределения
Закон распределения с плотностью
(19.3.6) называется показательным законом, а величина
Рис 19.3.4. Показательный закон, как мы увидим в дальнейшем, играет большую роль в теории дискретных случайных процессов с непрерывным временем. Поэтому рассмотрим его подробнее. Найдем математическое ожидание
величины
или, интегрируя по частям,
Дисперсия величины
откуда
Докажем одно замечательное
свойство показательного закона. Оно состоит в следующем: если промежуток
времени, распределенный по показательному закону, уже длился некоторое время Для доказательства рассмотрим
случайный промежуток времени
и
предположим, что этот промежуток уже продолжается некоторое время
Докажем, что условный закон
распределения
По теореме умножения вероятностей
откуда
Но
событие
С другой стороны,
следовательно,
откуда, согласно формуле (19.3.10), получим
что и требовалось доказать. Таким образом, мы доказали, что
если промежуток времени
|
1 |
Оглавление
|