Главная > Теория вероятностей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

13.6. Массовые случайные явления и центральная предельная теорема

В предыдущих  мы рассмотрели различные формы закона больших чисел. Все эти формы, как бы они ни были различны, утверждают одно: факт сходимости по вероятности тех или иных случайных величин к определенным постоянным. Ни в одной из форм закона больших чисел мы не имеем дела с законами распределения случайных величин. Предельные законы распределения составляют предмет другой группы теорем - центральной предельной теоремы, которую иногда называют «количественной формой закона больших чисел».

Все формы центральной предельной теоремы посвящены установлению условий, при которых возникает нормальный закон распределения, Так как эти условия на практике весьма часто выполняются, формальный закон является самым распространенным из законов распределения, наиболее часто встречающимся в случайных явлениях природы. Он возникает во всех случаях, когда исследуемая случайная величина может быть представлена в виде суммы достаточно большого числа независимых (или слабо зависимых) элементарных слагаемых, каждое из которых в отдельности сравнительно мало влияет на сумму.

В теории стрельбы нормальный закон распределения играет особо важную роль, так как в большинстве случаев практики координаты точек попадания и точек разрыва снарядов распределяются по нормальному закону. Объяснить это можно на следующем примере.

Пусть производится стрельба по некоторой плоской мишени, с центром которой (точкой прицеливания) связано начало координат. Точка попадания характеризуется двумя случайными величинами:  и . Рассмотрим одну из них, например отклонение  точки попадания от цели в направлении оси . Это отклонение вызвано совокупным действием очень большого количества сравнительно малых факторов, как-то: ошибка наводки, ошибка в определении дальности до цели, вибрации орудия и установки при стрельбе, ошибки изготовления снаряда, атмосферные условия и т. д. Каждая из этих причин создает элементарную ошибку - отклонение снаряда от цели, и координата снаряда  может быть представлена как сумма таких элементарных отклонений:

,               (13.6.1)

где  - отклонения, вызванные отдельными факторами. Так как этих факторов очень много, между собой они являются в основном независимыми и по влиянию на сумму отдельные слагаемые можно считать приблизительно равномерно малыми, то налицо условия применимости центральной предельной теоремы, и величина (13.6.1) должна подчиняться закону распределения, близкому к нормальному.

Остановимся несколько подробнее на нашем утверждении о приблизительно равномерно малом влиянии каждого из слагаемых на сумму. Смысл его в том, что среди элементарных ошибок стрельбы нет ни одной резко превалирующей над суммой всех остальных. Действительно, если бы такая ошибка была, нужно думать, что, составляя правила стрельбы или конструируя прицельный прибор, мы постарались бы ликвидировать эту ошибку и учесть заранее самую значительную причину, отклоняющую снаряд от цели. Неучтенные случайные факторы, создающие рассеивание, обычно характерны своей равномерной малостью и отсутствием среди них резко преобладающих. Именно поэтому закон распределения точек попадания снарядов (или закон распределения точек разрыва снарядов при дистанционной стрельбе) обычно принимается нормальным.

Нормальный закон распределения является доминирующим не только в теории стрельбы, но и во многих других областях, например в теории ошибок измерения. Именно исходя из теории ошибок измерения нормальный закон и был впервые обоснован Лапласом и Гауссом. Действительно, в большинстве случаев ошибки, возникающие при измерении тex или иных физических величин, распределяются именно по нормальному закону; причина этого в том, что такие ошибки, как правило, складываются из многочисленных независимых элементарных ошибок, порождаемых различными причинами. Долгое время нормальный закон считался единственным и универсальным законом ошибок. В настоящее время взгляд на нормальный закон как на единственный и универсальный должен быть пересмотрен (опыт показывает, что в ряде процессов измерения и производства наблюдаются законы распределения, отличные от нормального), но все же нормальный закон остается самым распространенным и самым важным для практики законом ошибок.

 

1
Оглавление
email@scask.ru