Главная > Теория вероятностей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА 15 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ СЛУЧАЙНЫХ ФУНКЦИЙ

15.1. Понятие о случайной функции

До сих пор в нашем курсе теории вероятностей основным предметом исследования были случайные величины. Случайная величина характерна тем, что она в результате опыта принимает некоторое одно, заранее неизвестное, но единственное значение. Примерами таких случайных величин могут служить: абсцисса точки попадания при выстреле; ошибка радиодальномера при одном, единичном измерении дальности; горизонтальная ошибка наводки при одном выстреле и т. д.

Ограничиваясь рассмотрением подобных отдельных случайных величин, мы изучали случайные явления как бы «в статике», в каких-то фиксированных постоянных условиях отдельного опыта.

Однако такой элементарный подход к изучению случайных явлений в ряде практических задач является явно недостаточным. На практике часто приходится иметь дело со случайными величинами, непрерывно изменяющимися в процессе опыта. Примерами таких случайных величин могут служить: ошибка радиодальномера при непрерывном измерении меняющейся дальности; угол упреждения при непрерывном прицеливании по движущейся цели; отклонение траектории управляемого снаряда от теоретической в процессе управления или самонаведения.

Такие случайные величины, изменяющиеся в процессе опыта, мы будем в отличие от обычных случайных величин называть случайными функциями.

Изучением подобных случайных явлений, в которых случайность проявляется в форме процесса, занимается специальная отрасль теории вероятностей - теория случайных функций (иначе - теория случайных или стохастических процессов). Эту науку можно образно назвать «динамикой случайных явлений».

Теория случайных функций - новейший раздел теории вероятностей, развившийся, в основном, за последние два-три десятилетия. В настоящее время эта теория продолжает развиваться и совершенствоваться весьма быстрыми темпами. Это связано с непосредственными требованиями практики, в частности с необходимостью решения ряда технических задач. Известно, что за последнее время в технике все большее распространение получают системы с автоматизированным управлением. Соответственно все большие требования предъявляются к теоретической базе этого вида техники - к теории автоматического управления. Развитие этой теории невозможно без анализа ошибок, неизбежно сопровождающих процессы управления, которые всегда протекают в условиях непрерывно воздействующих случайных возмущений (так называемых «помех»). Эти возмущения по своей природе являются случайными функциями. Для того чтобы рационально выбрать конструктивные параметры системы управления, необходимо изучить ее реакцию на непрерывно воздействующие случайные возмущения, а единственным аппаратом, пригодным для такого исследования, является аппарат теории случайных функций.

В данной главе мы познакомимся с основными понятиями этой теории и с общей постановкой ряда практических задач, требующих применения теории случайных функций. Кроме того, здесь будут изложены общие правила оперирования с характеристиками случайных функций, аналогичные правилам оперирования с числовыми характеристиками обычных случайных величин.

Первым из основных понятий, с которыми нам придется иметь дело, является само понятие случайной функции. Это понятие настолько же шире и богаче понятия случайной величины, насколько математические понятия переменной величины и функции шире и богаче понятия постоянной величины.

Вспомним определение случайной величины. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, неизвестно заранее - какое именно. Дадим аналогичное определение случайной функции.

Случайной функцией называется функция, которая в результате опыта может принять тот или иной конкретный вид, неизвестно заранее - какой именно.

Конкретный вид, принимаемый случайной функцией в результате опыта, называется реализацией случайной функции. Если над случайней функцией произвести группу опытов, то мы получим группу или «семейство» реализаций этой функции.

Приведем несколько примеров случайных функций.

Пример 1. Самолет-бомбардировщик на боевом курсе имеет теоретически постоянную воздушную скорость . Фактически его скорость колеблется около этого среднего номинального значения и представляет собой случайную функцию времени. Полет на боевом курсе можно рассматривать как опыт, в котором случайная функция  принимает определенную реализацию (рис. 15.1.1).

image8

Рис. 15.1.1.

От опыта к опыту вид реализации меняется. Если на самолете установлен самопишущий прибор, то он в каждом полете запишет новую, отличную от других реализацию случайной функции. В результате нескольких полетов можно получить семейство реализаций случайной функции  (рис. 15.1.2).

image9

Рис. 15.1.2.

Пример 2. При наведении управляемого снаряда на цель ошибка наведения  представляет собой отклонение центра массы снаряда от теоретической траектории, т. е. случайную функцию времени (рис. 15.1.3).

image10

Рис. 15.1.3.

В том же опыте случайными функциями времени являются, например, перегрузка снаряда , угол атаки  и т. д.

Пример 3. При стрельбе с самолета по самолету перекрестие прицела в течение некоторого времени должно непрерывно совмещаться с целью - следить за ней. Операция слежения за целью сопровождается ошибками - так называемыми ошибками наводки (рис. 15.1.4).

image11

Рис. 15.1.4.

Горизонтальная и вертикальная ошибки наводки в процессе прицеливания непрерывно меняются и представляют собой две случайные функции  и . Реализации этих случайных функций можно получить в результате дешифровки снимков фотопулемета, фотографирующего цель в течение всего процесса слежения.

Число примеров случайных функций, встречающихся в технике, можно было бы неограниченно увеличивать. Действительно, в любом случае, когда мы имеем дело с непрерывно работающей системой (системой измерения, управления, наведения, регулирования), при анализе точности работы этой системы нам приходится учитывать наличие случайных воздействий (помех). Как сами помехи, так и вызванная ими реакция системы представляют собой случайные функции времени.

До сих пор мы говорили только о случайных функциях, аргументом которых является время . В ряде задач практики встречаются случайные функции, зависящие не от времени, а от других аргументов. Например, характеристики прочности неоднородного стержня могут рассматриваться как случайные функции абсциссы сечения . Температура воздуха в различных слоях атмосферы может рассматриваться как случайная функция высоты .

На практике встречаются также случайные функции, зависящие не от одного аргумента, а от нескольких. Например, аэрологические данные, характеризующие состояние атмосферы (температура, давление, ветер), представляют собой в общем случае случайные функции четырех аргументов: трех координат  и времени .

В данном курсе мы будем рассматривать только случайные функции одного аргумента. Так как этим аргументом чаще всего является время, будем обозначать его буквой . Кроме того, условимся, как правило, обозначать случайные функции большими буквами  в отличие от неслучайных функций .

Рассмотрим некоторую случайную функцию . Предположим, что над ней произведено  независимых опытов, в результате которых получено  реализаций (рис. 15.1.5).

Рис. 15.1.5.

Обозначим их соответственно номеру опыта .

Каждая реализация, очевидно, есть обычная (неслучайная) функция. Таким образом, в результате каждого опыта случайная функция  превращается в обычную, неслучайную функцию.

Зафиксируем теперь некоторое значение аргумента  и посмотрим, во что превратится при этом случайная функция . Очевидно, она превратится в случайную величину в обычном смысле слова. Условимся называть эту случайную величину сечением случайной функции, соответствующим данному . Если провести «сечение» семейства реализаций при данном  (рис. 15.1.5), мы получим  значений, принятых случайной величиной  в  опытах.

Мы видим, что случайная функция совмещает в себе черты случайной величины и функции. Если зафиксировать значение аргумента, она превращается в обычную случайную величину; в результате каждого опыта она превращается в обычную (неслучайную) функцию.

В ходе дальнейшего изложения мы часто будем попеременно рассматривать одну и ту же функцию  то как случайную функцию, то как случайную величину, в зависимости от того, рассматривается ли она на всем диапазоне изменения  или при его фиксированном значении.

 

1
Оглавление
email@scask.ru