Главная > Теория вероятностей
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

15.5. Методы определения характеристик преобразованных случайных функций по характеристикам исходных случайных функций

В предыдущем  мы познакомились с методом непосредственного определения характеристик случайной функции из опыта. Такой метод применяется далеко не всегда. Во-первых, постановка специальных опытов, предназначенных для исследования интересующих нас случайных функций, может оказаться весьма сложной и дорогостоящей. Во-вторых, часто нам требуется исследовать случайные функции, характеризующие ошибки приборов, прицельных приспособлений, систем управления и т. д., еще не существующих, а только проектируемых или разрабатываемых. При этом обычно исследование этих ошибок и предпринимается именно для того, чтобы рационально выбрать конструктивные параметры системы так, чтобы они приводили к минимальным ошибкам. Ясно, что при этом непосредственное исследование случайных функций, характеризующих работу системы, нецелесообразно, а в ряде случаев вообще невозможно. В таких случаях в качестве основных рабочих методов применяются не прямые, а косвенные методы исследования случайных функций. Подобными косвенными методами мы уже пользовались при исследовании случайных величин: ряд глав нашего курса - гл. 10, 11, 12 - был посвящен нахождению законов распределения и числовых характеристик случайных величин косвенно, по законам распределения и числовым характеристикам других случайных величии, с ними связанных. Пользуясь совершенно аналогичными методами, можно определять характеристики случайных функций косвенно, по характеристикам других случайных функций, с ними связанных. Развитие таких косвенных методов и составляет главное содержание прикладной теории случайных функций.

Задача косвенного исследования случайных функций на практике обычно возникает в следующей форме.

Имеется некоторая динамическая система ; под «динамической системой» мы понимаем любой прибор, прицел, счетно-решающий механизм, систему автоматического управления и т. п. Эта система может быть механической, электрической или содержать любые другие элементы. Работу системы будем представлять себе следующим образом: на вход системы непрерывно поступают какие-то входные данные; система перерабатывает их и непрерывно выдает некоторый результат. Условимся называть поступающие на вход системы данные: «воздействием», а выдаваемый результат «реакцией» системы на это воздействие. В качестве воздействий могут фигурировать изменяющиеся напряжения, угловые и линейные координаты каких-либо объектов, сигналы или команды, подаваемые на систему управления, и т. п. Равным образом и реакция системы может вырабатываться в той или иной форме: в виде напряжений, угловых перемещений и т. д. Например, для прицела воздушной стрельбы воздействием является угловая координата движущейся цели, непрерывно измеряемая в процессе слежения, реакцией - угол упреждения.

Рассмотрим самый простой случай: когда на вход системы  подается только одно воздействие, представляющее собой функцию времени : реакция системы на это воздействие есть другая функция времени . Схема работы системы  условно изображена на рис. 15.5.1.

image21

Рис. 15.5.1.

Будем говорить, что система  осуществляет над входным воздействием некоторое преобразование, в результате которого функция  преобразуется в другую функцию . Запишем это преобразование символически в виде:

.                                  (15.5.1)

Преобразование  может быть любого вида и любой сложности. В наиболее простых случаях это, например, умножение на заданный множитель (усилители, множительные механизмы), дифференцирование или интегрирование (дифференцирующие или интегрирующие устройства). Однако на практике системы, осуществляющие в чистом виде такие простейшие преобразования, почти не встречаются; как правило, работа системы описывается дифференциальными уравнениями, и преобразование  сводится к решению дифференциального уравнения, связывающего воздействие  с реакцией .

При исследовании динамической системы в первую очередь решается основная задача: по заданному воздействию  определить реакцию системы . Однако для полного исследования системы и оценки ее технических качеств такой элементарный подход является недостаточным. В действительности воздействие  никогда не поступает на вход системы в чистом виде: оно всегда искажено некоторыми случайными ошибками (возмущениями), в результате которых на систему фактически воздействует не заданная функция , а случайная функция ; соответственно этому система вырабатывает в качестве реакции случайную функцию , также отличающуюся от теоретической реакции  (рис. 15.5.2).

image22

Рис. 15.5.2.

Естественно возникает вопрос: насколько велики будут случайные искажения реакции системы при наличии случайных возмущений на ее входе? И далее: как следует выбрать параметры системы для того, чтобы эти искажения были минимальными?

Решение подобных задач не может быть получено методами классической теории вероятностей; единственным подходящим математическим аппаратом для этой цели является аппарат теории случайных функций.

Из двух поставленных выше задач, естественно, более простой является первая - прямая - задача. Сформулируем ее следующим образом.

На вход динамической системы  поступает случайная функция ; система подвергает ее известному преобразованию, в результате чего на выходе системы появляется, случайная функция:

.                                 (15.5.2)

Известны характеристики случайной функции : математическое ожидание и корреляционная функция. Требуется найти аналогичные характеристики случайной функции . Короче: по заданным характеристикам случайной функции на входе динамической системы найти характеристики случайной функции на выходе.

Поставленная задача может быть решена совершенно точно в одном частном, но весьма важном для практики случае: когда преобразование  принадлежит к классу так называемых линейных преобразований и соответственно система  принадлежит к классу линейных систем.

Содержание этих понятий будет пояснено в следующем .

 

Categories

1
Оглавление
email@scask.ru