Главная > Теория вероятностей
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА 4 ПОВТОРЕНИЕ ОПЫТОВ

4.1. Частная теорема о повторении опытов

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться некоторое событие , причем нас интересует не результат каждого отдельного опыта, а общее число появлений события  в результате серии опытов. Например, если производится группа выстрелов по одной и той же цели, нас, как правило, интересует не результат каждого выстрела, а общее число попаданий. В подобных задачах требуется уметь определять вероятность любого заданного числа появлений события в результате серии опытов. Такие задачи и будут рассмотрены в данной главе. Они решаются весьма просто в случае, когда опыты являются независимыми.

Несколько опытов называются независимыми, если вероятность того или иного исхода каждого из опытов не зависит от того, какие исходы имели другие опыты. Например, несколько последовательных бросаний монеты представляют собой независимые опыты. Несколько последовательных выниманий карты из колоды представляют собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае это – зависимые опыты. Несколько выстрелов представляют собой независимые опыты только в случае, если прицеливание производится заново перед каждым выстрелом; в случае, когда прицеливание производится один раз перед всей стрельбой или непрерывно осуществляется в процессе стрельбы (стрельба очередью, бомбометание серией), выстрелы представляют собой зависимые опыты. Независимые опыты могут производиться в одинаковых или различных условиях. В первом случае вероятность события  от опыта к опыту меняется. К первому случаю относится частная теорема, а ко второму – общая теорема о повторении опытов. Мы начнем с частной теоремы, как более элементарной. Прежде всего, рассмотрим конкретный пример.

Пример. Производится три независимых выстрела по мишени, вероятность попадания в которую при каждом выстреле равна . Найти вероятность того, что при этих трех выстрелах мы получим ровно два попадания.

Решение. Обозначим событие, состоящее в том, что в мишень попадет ровно два снаряда. Это событие может произойти тремя способами:

1) попадание при первом выстреле, попадание при втором, промах при третьем;

2) попадание при первом выстреле, промах при втором, попадание при третьем;

3) промах при первом выстреле, попадание при втором, попадание при третьем.

Следовательно, событие можно представить как сумму произведений событий:

,

где  - попадания при первом, втором, третьем выстрелах соответственно,  - промах при первом, втором, третьем выстрелах.

Учитывая, что три перечисленных варианта события  несовместны, а события, входящие в произведения, независимы, по теоремам сложения и умножения получим:

,

или, обозначая ,

.

Аналогичным образом, перечисляя все возможные варианты, в которых интересующее нас событие может появиться заданное число раз, можно решить и следующую общую задачу.

Производится  независимых опытов, в каждом из которых может появиться или не появится некоторое событие ; вероятность появления события  в каждом опыте равна , а вероятность непоявления . Требуется найти вероятность  того, что событие  в этих  опытах появится ровно  раз.

Рассмотрим событие , состоящее в том, что событие  появится в  опытах ровно  раз. Это событие может осуществиться различными способами. Разложим событие на сумму произведений событий, состоящих в появлении или непоявлении события  в отдельном опыте. Будем обозначать  появление события  в i-м опыте;  - непоявление события  в i-м опыте.

Очевидно, каждый вариант появления события  (каждый член суммы) должен состоять из m появлений события  и  непоявлений, т.е. из  событий  и  событий  с различными индексами. Таким образом,

причем в каждое произведение событие  должно входить  раз, а  должно входить  раз.

Число всех комбинаций такого рода равно , т.е. числу способов, какими можно из  опытов выбрать , в которых произошло событие . Вероятность каждой такой комбинации, по теореме умножения для независимых событий, равна . Так как комбинации между собой несовместны, то, по теореме сложения, вероятность события  равна

Таким образом, мы можем дать следующую формулировку частной теоремы о повторении опытов.

Если производится  независимых опытов, в каждом из которых событие  появляется с вероятностью , то вероятность того, что событие  появится ровно  раз, выражается формулой

,              (4.1.1)

где .

Формула (4.1.1) описывает, как распределяются вероятности между возможными значениями некоторой случайной величины – числа появлений события  при  опытах.

В связи с тем, что вероятности  по форме представляют собой члены разложения бинома , распределение вероятностей вида (4.1.1) называют биномиальным распределением.

 

1
Оглавление
email@scask.ru