Главная > Высшая математика Т1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Цилиндры второго порядка

а) Эллиптический цилиндр

     .                                       (14)

Уравнение (14) не содержит переменной . На плоскости  уравнение (14) определяет эллипс с полуосями  и . Если точка  лежит на этом эллипсе, то при любом  точка  лежит на поверхности (14). Совокупность таких точек есть поверхность, описанная прямой, параллельной оси  и пересекающей эллипс

в плоскости .

Эллипс (14) называют направляющей линией данной поверхности, а все возможные положения указанной движущейся прямой – образующими.

Вообще поверхность, описываемая прямой, остающейся параллельной некоторому заданному направлению и пересекающей данную линию , называется цилиндрической. Поверхность (14) изображена на рис.49.

Рис.49

б) Гиперболический и параболический цилиндры

     ,                                                    (15)

     .                                                             (16)

В данном случае направляющими линиями поверхностей являются гипербола и парабола, а образующими - прямые параллельные оси  и проходящие через гиперболу или параболу в плоскости . Поверхности (15) и (16) изображены на рис. 50 и 51.

в) Параллельные и пересекающиеся плоскости. Прямая.

     ,                                                          (17)

     ,                                                          (18)

,                                                                                       (19)

.                                                                            (20)

Для поверхности (17) направляющими являются прямые линии

.

Поэтому поверхность (17) есть пара пересекающихся плоскостей. В уравнении поверхностей (18) и (19) отсутствуют по две координаты. Уравнение (18) в плоскости  есть пара прямых .

Рис. 50                                                                                                            Рис. 51

Если мы будем брать  и любые  и , то точки  будут удовлетворять уравнению (18), поэтому поверхность (18) есть пара параллельных плоскостей.

Уравнение (19) описывает плоскость , так как этому уравнению удовлетворяют любые точки вида , все множество которых и составляет плоскость .

Можно также рассматривать  как направляющую в какой-либо из плоскостей  или , а образующими являются прямые, параллельные оси  или оси  и проходящие через прямую .

Уравнению (20) удовлетворяет любая точка с  и любым . Поэтому (20) изображает прямую, а именно, ось .

 

1
Оглавление
email@scask.ru