Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ПУРИНЫБиосинтез пуриновых нуклеотидовУ человека и других млекопитающих пуриновые нуклеотиды синтезируются для обеспечения потребностей организма в мономерных предшественниках нуклеиновых кислот, а также в соединениях, выполняющих другие функции, описанные в гл. 34. У некоторых позвоночных (птицы, земноводные, рептилии) синтез пуриновых нуклеотидов несет дополнительную функцию — является частью механизма, с помощью которого выводятся излишки азота в виде мочевой кислоты; такие организмы называют урикотелическими. Организмы, у которых конечным продуктом азотистого обмена является мочевина (как у человека), называют уреотеличеекими. Поскольку урикотелические организмы удаляют «излишки» азота в виде мочевой кислоты, синтез пуриновых нуклеотидов у них идет более интенсивно, чем у уреотелических. В то же время пути синтеза пуриновых нуклеотидов de novo — общие для обеих групп организмов. Информация о происхождении каждого из атомов в молекуле пуринового основания получена в процессе радиоизотопных исследований, проведенных на птицах, крысах и человеке (рис. 35.2). На рис. 35.3 представлена схема пути биосинтеза пуриновых нуклеотидов. Первая стадия (реакция 1) - образование 5-фосфорибозил-1-пирофосфата (ФРПФ). Эта реакция не уникальна для биосинтеза пуриновых нуклеотидов. ФРПФ служит также предшественником в синтезе пиримидиновых нуклеотидов (см. рис. 35.15), он необходим для синтеза NAD и NADP — двух коферментов, в состав которых входит никотиновая кислота.
Рис. 35.2. Происхождение атомов азота и углерода пуринового кольца. В реакции 2 (рис. 35.3), катализируемой фосфорибозил-пирофосфат-амидотрансферазой, из ФРПФ и глутамина образуются глутамат и 5-фосфорибозиламин. Хотя возможны и другие механизмы синтеза 5-фосфорибозиламина, реакция, катализируемая амидотрансферазой, имеет наиболее важное физиологическое значение в тканях млекопитающих. Далее 5-фосфорибозйламин вступает в реакцию с глицином (реакция 5); при этом образуется глицинамидрибозилфосфат (глицинамидориботид, ГАР). Амидная группа глутамина служит источником атома азота в положении 9 молекулы пурина (N-9), а глицин—источником атомов углерода в положениях 4 и 5 (С-4 и С-5) пуринового кольца. Эту реакцию катализирует глицинамид-киносишегаза. В реакции 4 атом азота В результате замыкания имидазольного кольца, катализируемого аминоимндазолрибозилфое-фатсинтетазой, образуется аминоимидазол-рибозилфосфат (реакция 6). Далее синтез проходит через стадию образования аминоимидазолкар-боксилат-рибозилфосфата (реакция 7). В результате реакции формируется карбонильная группа, источником которой служит молекула Атом азота в положении 1 происходит из а-аминогруппы аспартата (реакция 8), остальная часть которого образует сукцинильный фрагмент в молекуле аминоимидазолсукцинилкарбоксиламид-рибозилфосфата (АИСКАР). В реакции 9 сукцинильная группа АИСКАР удаляется в виде фумарата. Оставшийся аминоимидазолкарбоксиламид-рибозилфосфат формилируется (реакция 10) Замыкание кольца (реакция 11) происходит с помощью IMP-циклогидролазы, в результате образуется первый пуриновый нуклеотид—инозиновая кислота (инозинмонофоефат; IMP). (см. скан) Рис. 35.3. Путь биосинтеза de novo пуринов из рибозо-5-фосфата и АТР (пояснения — в тексте). Значение метаболизма фолатовВ процессе биосинтеза пуриновых нуклеотидов (рис. 35.3) атомы углерода в положениях 8 и 2 поступают соответственно от Образование АМР и GMP из IMPКак показано на рис. 35.4 адениновые (реакции 12 и 13) и гуаниновые нуклеотиды (реакции 14 и 15) образуются путем аминирования и соответственно окисления и аминирования общего предшественника—инозинмонофоефата (IMP). Аминирование ГМР протекает через стадию образования промежуточного соединения, в котором аспартат присоединяется к инозиновой кислоте, образуя аденилосукцинат. Эта реакция напоминает реакцию 8 биосинтеза пуринов (рис. 35.3), в которой а-азот аспарагиновой кислоты поставляет атом Так же, в две стадии, из IMP образуется гуанзинмонофосфат (GMP). В первой реакции на этом пути (реакция 14) при участии NAD и
Рис. 35.4. Превращение IMP в АМР и GMP (пояснение в тексте). Ингибиторы биосинтеза пуриновНесколько антиметаболитов — аналогов глутамина оказывают сильное ингибирующее воздействие на биосинтез пуринов. Азасерин (О-диазо-ацетил-b-серин) выступает как антагонист глутамина, особенно в реакции 5. Диазонорлейцин Образование ди- и трифосфатов пуриновых нуклеозидовПревращение АМР и GMP в соответствующие ди- и трифосфаты осуществляется в две стадии (рис. 35.5). Реакции фосфорилирования — переноса фосфатных групп от АТР—осуществляются нуклеозидмонофосфаткиназой и нуклеозиддифосфаткииазой. Синтез пуриновых дезоксирибонуклеотидовСинтез пуриновых и пиримидиновых дезоксирибонуклеотидов происходит путем прямого восстановления 2-углерода рибозного остатка соответствующего рибонуклеотида, а не путем синтеза de novo из 2'-дезоксианалога ФРПФ. Восстановление 2-углеродного атома рибозы происходит только после превращения пуриновых и пиримидиновых нуклеотидов в соответствующие нуклеозиддифосфаты. У некоторых бактерий в этом восстановительном процессе участвует кобаламин (витамин В12). У животных процесс восстановления идет и в отсутствие витамина В12. Восстановление рибонуклеозиддифосфатов в дезоксирибонуклеозиддифосфаты катализируется рибонуклеотидредуктазой и требует участия тиоредоксина (белковый кофактор), тиоредоксинредукчаш (флавопрогеиновый фермент) и NADPH (кофактор). Непосредственным донором электронов для нуклеотида является тиоредоксин, который предварительно восстанавливается NADPH. Обратимое окислительно-восстановительное превращение тиоредоксина катализируется тиоредоксинре-дуктазой. Восстановление рибонуклеозиддифосфата восстановленным тиоредоксином катализируется рибонуклеозидредуктазой (рис. 35.6).
Рис. 35.5. Реакции фосфорилирования нуклеозидмонофосфата и нуклеозиддифосфата.
Рис. 35.6. Восстановление рибонуклеозиддифосфата до 2-дезоксирибонуклеозиддифосфата. Эта сложная ферментная система функционирует в клетках только в период активного синтеза ДНК и деления. Тканевая специфичность биосинтеза пуриновНе во всех тканях человека происходит синтез пуриновых нуклеотидов de novo. Эритроциты и полиморфноядерные лейкоциты не способны синтезировать Пути регенерации пуриновых нуклеотидовРегенерацию пуриновых нуклеотидов обеспечивают два основных механизма. В количественном отношении наиболее важен механизм фосфорибозилирования свободных пуриновых оснований ферментами, использующими ФРПФ в качестве донора фосфорибозы. Второй общий механизм — это фосфорилирование пуриновых нуклеозидов по 1. Фосфорибозилирование пуриновых оснований В тканях человека фосфорибозилирование
Рис. 35.7. Фосфорибозилирование аденина, катализируемое аденин-фосфорибозилтрансферазой. пуриновых оснований осуществляют два фермента. Первый — аденин-фосфорибозилтрансфераза — переносит фосфорибозу с ФРПФ на аденин. При этом образуется АМР (рис. 35.7). Второй — гипокеантин-гуанин—фосфорибозилтрансфераза — катализирует фосфорибозилирование ксантина и гуанина с образованием IMP и GMP соответственно (рис. 35.8). Процесс с участием второго фермента, как будет показано ниже, протекает более активно, чем синтез АМР из аденина. 2. Фосфорилирование пуриновых рибонуклеозидов Превращение пуриновых рибонуклеозидов в пуриновые рибонуклеотиды у человека катализирует фермент аденозинкиназа (рис. 35.9). Аденозинкиназа, кроме того, фосфорилирует 2-дезоксиаденозин, она проявляет также некоторую активность по отношению к гуанозину, инозину и их 2-дезоксипроизводным. Дезоксицитидинкиназа в дополнение к фосфорилированию Кроме того, в тканях человека функционирует цикл (рис. 35.10), в котором сначала IMP, GMP и их дезоксирибонуклеотидные аналоги при действии
Рис. 35.8. Фосфорибозилирование гипоксантина и гуанина до IMP и GMP соответственно. Обе реакции катализируются гипоксантин-гуанин—фосфорибозилтрансферазой.
Рис. 35.9. Фосфорилирование аденозина до АМР аденозинкиназой. пурин-5-нуклеотидазы превращаются в соответствующие нуклеозиды (инозин, дезоксинозин, гуанозин и дезоксигуанозин), а затем в результате реакции, катализируемой пуриннуклеозцдфосфорилазой, образуются гипоксантин или гуанин и продукты фосфоролизарибозо-1-фосфат или 2-дезоксирибозо-1-фосфат. Далее при участии ФРПФ цикл завершается фосфорибозилированием образовавшихся оснований до IMP или GMP. Функция этого цикла неизвестна, однако не вызывает сомнений, что потребление ФРПФ в организме человека в данном цикле выше, чем при синтезе пуриновых нуклеотидов de novo. Боковой путь этого цикла включает превращение IMP в АМР (реакция 12 и 13, рис. 35.4) и последующую реакцию образования аденозина из АМР. Эта реакция, по-видимому, катализируется той же пурин-5-нуклеотидазой, которая гидролизует IMP до инозина. Образовавшийся аденозин затем либо фосфорилируется аденозинкиназой до АМР, либо под действием аденозиндезаминазы превращается в инозин. В количественном отношении эта «инози-новая петля» менее значима, чем описанный выше цикл, однако реакция дезаминирования аденозина весьма важна для функционирования иммунной системы. Регуляция биосинтеза пуриновНа синтез молекулы IMP затрачивается энергия гидролиза шести макроэргических фосфодиэфирных связей АТР, при этом в качестве предшественников выступают глицин, глутамин, метенилтетрагидрофолат и аспартат. Для экономии энергетических и питательных ресурсов важна эффективная регуляция процесса биосинтеза пуринов de novo. Важнейшую
Рис. 35.10. Циклы реутилизации пуринов, включающие взаимные превращения AMP, IMP и, в меньшей степени, GMP; образование соответствующих рибонуклеозидов и их превращение в пуриновые рибонуклеотиды. Дезоксиаденозин, дезоксиинозин и дезоксигуанозин превращаются по тем же путям; дезоксиаденозин и дезоксигуанозин могут непосредственно фосфорилироваться до dAMP и dGMP соответственно. роль в этом процессе играет внутриклеточная концентрация ФРПФ. Она определяется соотношением скоростей его синтеза, утилизации и деградации. Скорость синтеза ФРПФ зависит от 1) наличия субстратов синтеза, особенно рибозо-5-фосфата, и 2) каталитической активности ФРПФ-синтазы, которая в свою очередь связана с внутриклеточной концентрацией фосфатов, а также с концентрацией пуриновых и пиримидиновых рибонуклеотидов, выступающих в роли аллостерических регуляторов (рис. 35.11). Скорость утилизации ФРПФ в значительной степени зависит от интенсивности цикла реутилизации пуриновых оснований, в ходе которого ксантин и гуанин фосфорибозилируются до соответствующих рибонуклеотидов. В меньшей степени скорость утилизации ФРПФ зависит от интенсивности синтеза пуринов de novo. Этот вывод основан на следующем наблюдении: в эритроцитах и культивируемых фибробластах мужчин с наследственным нарушением активности гипоксантин-гуанин—фосфо-рибозилтрансферазы уровень ФРПФ повышается в несколько раз.
Рис. 35.11. Регуляция скорости синтеза пуринов de novo. Сплошные линии указывают путь химических превращений. Пунктирные линии обозначают ингибирование
Рис. 35.12. Регуляция превращений IMP в аденозиновые и гуанозиновые нуклеотиды. Сплошные линии указывают путь химических превращений. Пунктирные линии обозначают положительную Показано, что ФРПФ-амидотрансфераза — первый из ферментов, участвующих в процессе синтеза пуриновых нуклеотидов de novo, ингибируется in vitro пуриновыми нуклеотидами (особенно аденозинмонофосфатом и гуанозинмонофосфатом) по принципу обратной связи. Эти ингибиторы конкурируют с субстратом — ФРПФ, последний, как выяснилось, занимает центральное место в регуляции синтеза пуринов de novo. Многие косвенные данные свидетельствуют о том, что роль амидотрансферазы в этом процессе менее существенна, чем ФРПФ-синтетазы. Образование GMP или АМР из IMP регулируется двумя механизмами (рис. 35.12). АМР регулирует активность аденилосукцинатсинтетазы, влияя по принципу обратной связи на собственный синтез. GMP регулирует собственный синтез, действуя по тому же принципу на Восстановление рибонуклеозиддифосфатов до дезоксирибонуклеозидцифосфатов является объектом сложной регуляции. Этот процесс (рис. 35.13) обеспечивает сбалансированное образование дезоксирибонуклеотидов для синтеза ДНК.
Рис. 35.13. Регуляция восстановления пуриновых и пиримидиновых рибонуклеотидов до соответствующих Катаболизм пуриновКонечный продукт катаболизма пуринов у человека — мочевая кислота. При обследовании больных с наследственной формой недостаточности ферментных систем катаболизма пуринов установлено, что 99% мочевой кислоты образуется из субстратов нуклеозидфосфорилазы, функционирующей в цикле реутилизации пуринов. Пуриновые продукты нуклео-зидфосфорилазной реакции — гипоксантин и гуанин — превращаются в мочевую кислоту; промежуточным продуктом является ксантин, образующийся в реакциях, катализируемых гуаназой и ксантинокеидазой (см. рис. 35.1) в печени, тонком кишечнике и почках. Ксантиноксидаза представляет собой важную мишень для фармакологического вмешательства при гиперурикемии и подагре. У низших приматов и других млекопитающих (но не у человека) мочевая кислота гидролизуется уриказой до аллантоина (рис. 35.14) - соединения, хорошо растворимого в воде. У птиц и наземных рептилий уриказа отсутствует; в качестве конечных продуктов метаболизма азота (белков) и пуринов они экскретируют мочевую кислоту и гуанин. У этих организмов сформировалась урикотелическая система, позволяющая сохранить воду, ассоциированную с мочевой кислотой, при выделении последней в виде преципитата. Если бы конечным продуктом метаболизма азота у них была мочевина, сохранить гидратационную воду было бы невозможно, поскольку растворимость мочевины в воде достигает 10 моль/л (концентрация значительно выше той, которая может быть достигнута при концентрировании мочевины почками). Метаболизм мочевой кислоты у человека (подагра)Метаболизм мочевой кислоты у человека был изучен с применением изотопно-меченных мочевой кислоты, а также ее предшественников—глицина и формиата. [
Рис. 35.14. Образование аллантоина из мочевой кислоты. аммиака и выделяется через кишечник. Некоторое количество уратов экскретнруется с желчью и подвергается деградации кишечной микрофлорой. Следует отметить, что распад мочевой кислоты до Значение уратов для организма человека не ограничивается их ролью конечного продукта в метаболизме пуринов. Ураты могут функционировать как антиоксиданты, претерпевая неферментативное превращение в аллантоин. Предполагается, что эндогенный антиоксидант — урат — заменяет у приматов аскорбат, способность к синтезу которого у этих млекопитающих утрачена. Таким образом, вполне возможно, что в процессе эволюции утрата уриказы обеспечила определенные селективные преимущества для тех организмов, которые потеряли способность к восстановлению гулонолактона в аскорбат. Урат натрия легко фильтруется почечными клубочками млекопитающих, интенсивно реабсорбируется и частично экскретируется в проксимальных канальцах, затем секретируется в петле Хенле и, вероятно, снова реабсорбируется в дистальных канальцах. За сутки здоровым человеком выделяется 400—600 мг мочевой кислоты. Большое количество фармакологических препаратов и природных соединений оказывает влияние на реабсорбцию урата натрия в почечных канальцах и его экскрецию. Аспирин в больших дозах ингибирует как экскрецию, так и реабсорбцию мочевой кислоты в почках.
|
1 |
Оглавление
|