Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ИТОГИ И ВЫВОДЫВ этой главе были рассмотрены два частных класса непрерывных по времени каналов. Первый класс составляли каналы, в которых переданный сигнал сначала фильтровался, а затем складывался со стационарным гауссовым шумом. Фильтр можно рассматривать либо как частотное ограничение на входе, либо как часть канала. Второй класс составляли каналы, в которых передающая среда была диспергирующей и изменяющейся во времени. В первом параграфе было показано, как представить функции времени и гауссовские случайные процессы с помощью ортонормальных разложений. Наше представление гауссовских случайных процессов было там не совсем обычным, так как мы определяли процесс через линейные операции над процессом, а не через совместные распределения процесса для всех конечных множеств моментов времени. Этот подход имеет те преимущества, что позволяет удовлетворительно сточки зрения физики описывать белый шум и избежать все математические тонкости и трудности, которые возникают при переходе от точечного описания к описанию с помощью линейных операций. В § 8.2 исследовалась оптимальная вероятность ошибки и оптимальный приемник множества ортогональных сигналов в белом шуме. Было показано также, что эти результаты могут быть непосредственно преобразованы в результаты для симплексного множества сигналов. В § 8.3 дан эвристический вывод выражения для пропускной способности канала с фильтром и аддитивным стационарным гауссовым шумом. В § 8.4 и 8.5 это исследование продолжено со строгим анализом пропускной способности и верхних границ для минимума достижимой вероятности ошибки. Однако проведенный анализ не был полным; в нем не учитывалась интерференция между последовательными кодовыми словами. Последняя задача остается открытой для исследования. В § 8.6 сначала была разработана математическая модель для передачи сообщений с помощью кода, образованного разнесенными по частоте синусоидами, по диспергирующему каналу с замираниями и аддитивным стационарным белым гуссовым шумом. Затем были выведены экспоненциальные границы вероятности ошибки для этой модели канала при использовании указанного класса кодов, и было показано, что пропускная способность канала равна ИСТОРИЧЕСКИЕ ЗАМЕЧАНИЯ И ССЫЛКИРассмотренные здесь ортонормальные разложения и интегральные уравнения хорошо освещены в литературе; можно рекомендовать, например, Куранта и Гильберта (1959) и Рисса и Надь (1955). По гауссовским случайным процессам Возенкрафт и Джекобе (1965) и Давенпорт и Рут (1958) написали превосходные книги для инженеров, а Дуб (1953) и Лоев (1955) написали превосходные математические книги. Другой подход к обнаружению сигнала в небелом гауссовом шуме, не использующий ортонормальные разложения, можно найти у Кайлата (1967). Верхние и нижние границы вероятности ошибки для ортогональных сигналов на фоне белого гауссового шума были найдены Фано (1961) и Зеттербергом (1961) соответственно. Пропускная способность каналов с аддитивным не белым гауссовым шумом была найдена Шенноном (1948) и со строгим выводом Пинскером (1957). Пропускная способность и теорема кодирования для рассмотренных здесь каналов с фильтром были получены Холзингером (1964). Изложение § 8.4 и 8.5 весьма близко следует Холзингеру, за исключением доказательств, предложенных здесь для некоторых преобразований, которые ранее проводились формально. Вайнер (1966) провел исследование ряда различных математических моделей для частного случая строго ограниченного по полосе частот сигнала в белом гауссовом шуме и вывел для них теоремы кодирования. Его выводы создают дополнительную уверенность в том, что результаты являются нечувствительными к малым изменениям модели. Рут и Варея (1967) рассмотрели обобщение предложенной здесь модели, когда фильтр и шум недостаточно известны. Кеннеди (1969) предложил хорошо написанную и значительно более полную разработку надежной передачи по диспергирующим каналам с замираниями и вывел верхнюю и нижнюю границы вероятности ошибки для более широкого класса систем связи. Результаты, указанные здесь, принадлежат главным образом Кеннеди. Верхняя граница вероятности ошибки, задаваемая (8.6.22) и (8.6.23), была выведена независимо Юдкиным (1964) и Кеннеди (1964), а Пирс (1961) ранее нашел выражение для
|
1 |
Оглавление
|