Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.4. ВЕРОЯТНОСТЬ И ВЗАИМНАЯ ИНФОРМАЦИЯ ДЛЯ НЕПРЕРЫВНЫХ АНСАМБЛЕЙРассмотрим ансамбль X, определяющий случайную величину х, принимающую значения из выборочного пространства, образованного множеством действительных чисел. Вероятностная мера на этом пространстве проще всего задается с помощью функции распределения
Для каждого действительного числа
Так как вероятность любого события должна быть неотрицательной, равенство (2.4.2) означает, что Плотность вероятности X (если она существует) задается равенством
Таким образом, Рассмотрим теперь совместный ансамбль
Она является неубывающей функцией двух переменных и для каждой пары значений
Совместная плотность вероятности
Функция Отдельные плотности вероятностей, определенные равенством (2.4.3), задаются также равенствами
Если
Она является плотностью вероятности, отнесенной к единице длины случайной величины у при значении
Как и для дискретных ансамблей, мы часто будем опускать подстрочные символы у плотностей вероятности, если не будет возникать двусмысленности. Когда это будет делаться, нужно иметь в виду, что, если, например, Для совместных ансамблей, определяющих более чем две случайные величины, совместная функция распределения и различные совместные, отдельные и условные плотности вероятности определяются аналогичным образом. Определим теперь взаимную информацию для непрерывного совместного ансамбля. Пусть совместный ансамбль
В принятых сокращенных обозначениях это равенство имеет вид
Используя равенства (2.4.11) и (2.4.12), это равенство можно представить как
Сходство между определениями информации, предложенными здесь и для дискретных ансамблей, удобно для запоминания, но не дает реального основания для введения этого определения. Для того чтобы дать такое обоснование, проквантуем ось х на интервалы длины А, а ось у — на интервалы длины
Деля числитель и знаменатель на
Переходя к пределу при Так же как и в случае дискретных ансамблей, взаимная информация является случайной величиной; ее среднее значение равно
Переходя к чуть более общей ситуации, предположим, что выборочное пространство X является множеством Пусть теперь х, у и z — случайные величины с действительными конечномерными выборочными пространствами и пусть
Эту величину, так же как и
С помощью этих определений немедленно получаем все теоремы и равенства, отмеченные звездочками в § 2 2 и 2.3, если использовать приведенные там доказательства и выводы. При рассмотрении дискретных ансамблей было ясно, что средняя взаимная информация не зависит от обозначений, принятых для элементов отдельных выборочных пространств. Эта инвариантность по отношению к обозначениям свойственна также средней взаимной информации в случае непрерывных ансамблей, хотя это менее очевидно. Чтобы показать это, рассмотрим совместный ансамбль
Предположим, далее, что у является обратимым преобразованием
Объединяя эти неравенства, получаем Рассмотрим теперь вопрос о том, можно ли дать осмысленное определение собственной информации для непрерывного ансамбля. Пусть X будет ансамблем, определяющим действительную случайную величину х с конечной плотностью вероятности
В пределе при А, стремящемся к интервала к нулю. Этот результат не является удивительным, если представлять себе действительные числа в виде десятичных дробей. Так как для точного представления произвольного действительного числа требуется бесконечная последовательность десятичных знаков, то следует ожидать, что собственная информация будет бесконечной. Трудность здесь состоит в требовании точного задания действительного числа. С физической точки зрения мы всегда удовлетворены приближенным заданием и любое приемлемое обобщение понятия собственной информации должно включать в себя некоторую желаемую аппроксимацию. Эта проблема будет исследована с фундаментальных позиций в гл. 9, но мы будем использовать термин собственная информация только для дискретных ансамблей. Для того чтобы иметь дело с различными средними и условными взаимными информациями и производить с ними вычисления, оказывается полезным определить энтропию непрерывного ансамбля. Если ансамбль X имеет плотность вероятности
Аналогично, условная энтропия определяется равенством
С помощью этих определений подобно равенствам (2.2.17) и (2.2.22) будем иметь
Эти энтропии не обязательно положительны, не обязательно конечны, не инвариантны по отношению к преобразованиям случайных величин и не могут быть интерпретированы как средние собственные информации. Пример 2.4. Следующий пример на приведенные выше определения будет полезен в дальнейшем при рассмотрении каналов с аддитивным гауссовым шумом. Пусть вход канала х будет гауссовской случайной величиной с нулевым средним значением; плотностью вероятности х будет
Параметр значением и дисперсией
Это значит, что при заданном х выход у имеет гауссовское распределение с дисперсией
В равенстве (2.4.32) было использовано то, что Заметим теперь, что выход канала является суммой двух независимых гауссовских случайных величин и, таким образом, является гауссовской случайной величиной с дисперсией
Находя
Отметим, что, когда Часто нас будут интересовать совместные ансамбли, для которых некоторые случайные величины являются дискретными, а некоторые — непрерывными. Простейший способ описания вероятностной меры таких ансамблей состоит в задании совместной вероятности дискретных случайных величин, принимаемой для каждого возможного совместного исхода, и в задании условной взаимной плотности вероятности для непрерывных случайных величин при условии, что задан каждый совместный исход дискретных случайных величин. Например, если случайная величина х имеет выборочное пространство
Условная вероятность некоторого значения х при условии, что задано значение
Взаимная информация и средняя взаимная информация между х и у задается соотношениями
Условная взаимная информация определяется аналогичным образом. Все равенства, отмеченные звездочкой в §§ 2.2 и 2.3, остаются, очевидно, справедливыми для этих смешанных дискретных и непрерывных ансамблей.
|
1 |
Оглавление
|