Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 15. Уравнение состояния газаВозьмем некоторое количество газа определенного химического состава, например азота, кислорода или воздуха, и заключим его в сосуд, объем которого можно изменять по своему усмотрению. Будем считать, что у нас имеется манометр, т. е. прибор для измерения давления газа, и термометр для измерения его температуры. Опыт показывает, что перечисленные макроскопические параметры полностью характеризуют газ как термодинамическую систему в том случае, когда этот газ состоит из нейтральных молекул, не обладающих собственным дипольным моментом. В состоянии термодинамического равновесия не все эти параметры независимы, они связаны между собой уравнением состояния. Чтобы получить это уравнение, нужно воспользоваться установленными на опыте закономерностями поведения газа при изменении каких-либо внешних параметров. Газ в сосуде — простая термодинамическая система. Примем сначала, что ни количество газа, ни его химический состав во время опыта не меняются, так что речь пойдет только о трех макроскопических параметрах — давлении Изопроцессы. Как уже отмечалось, из любого неравновесного состояния термодинамическая система приходит в состояние равновесия за некоторое время — время релаксации. Чтобы при происходящих в системе изменениях макроскопические параметры имели вполне определенные значения, характерное время этих изменений должно быть много больше времени релаксации. Это условие накладывает ограничения на допустимую скорость процесса в газе, при котором сохраняют смысл его макроскопические параметры. Процессы, протекающие при неизменном значении одного из параметров, принято называть изопроцессами. Так, процесс, происходящий при постоянной температуре, называется изотермическим, при постоянном объеме — изохорическим (изохорным), при постоянном давлении — изобарическим (изобарным). Закон Бойля-Мариотта. Исторически первым в газе был экспериментально изучен изотермический процесс. Английский физик Р. Бойль и независимо от него французский физик Э. Мариотт установили закон изменения объема при изменении давления: для данного количества любого газа при неизменной температуре объем обратно пропорционален давлению. Обычно закон Бойля—Мариотта записывают в виде
Для поддержания постоянной температуры исследуемый газ должен находиться в хорошем тепловом контакте с окружающей средой, имеющей неизменную температуру. В этом случае говорят, что газ находится в контакте с термостатом — большим тепловым резервуаром, на состояние которого не влияют любые изменения, происходящие с исследуемым газом. Закон Бойля—Мариотта хорошо выполняется для всех газов и их смесей в широком диапазоне температур и давлений. Отклонения от этого закона становятся существенными лишь при давлениях, в несколько сотен раз превышающих атмосферное, и при достаточно низких температурах. Проверить справедливость закона Бойля—Мариотта можно совсем простыми средствами. Для этого достаточно иметь запаянную с одного конца стеклянную трубку, в которой столбик ртути закрывает некоторое количество воздуха (трубка Мельде). Объем воздуха можно измерять линейкой по длине воздушного столба в трубке (рис. 45), а о давлении можно судить по высоте столбика ртути при разных ориентациях трубки в поле тяжести. Для наглядного изображения изменений состояния газа и происходящих с ним процессов удобно использовать так называемые
Рис. 45. Простейший прибор для проверки закона Бойля—Мариотта (трубка Мельде)
Рис. 46. Изотермы газа на Как следует из закона Бойля—Мариотта, газовые изотермы представляют собой гиперболы (рис. 46). Чем выше температура, тем дальше от координатных осей расположена соответствующая изотерма. Закон Шарля. Зависимость давления газа от температуры при неизменном объеме была экспериментально установлена французским физиком Ж. Шарлем. Согласно закону Шарля, давление газа при постоянном объеме линейно зависит от температуры:
где Закон Гей-Люссака. Аналогичный вид имеет и зависимость объема газа от температуры при неизменном давлении. Это было установлено на опыте французским физиком
где Совпадение температурных коэффициентов в законах Шарля и Гей-Люссака не случайно и свидетельствует о том, что эти устанавливаемые на опыте газовые законы не являются независимыми. Ниже мы подробнее остановимся на этом. Газовый термометр. Тот факт, что выражаемая законами Шарля и Гей-Люссака зависимость давления или объема от температуры одинакова для всех газов, делает особенно удобным выбор газа в качестве термометрического тела. Хотя на практике использовать газовые термометры в силу их громоздкости и тепловой инерционности неудобно, именно по ним производится градуировка других термометров, более удобных для практических применений. Шкала Кельвина. Зависимость давления или объема от температуры в законах Шарля и Гей-Люссака станет еще проще, если перейти к новой температурной шкале, потребовав, чтобы линейная зависимость превратилась в прямую пропорциональность. Изобразив выражаемую формулой (3) зависимость объема газа от температуры (рис. 47) и продолжив график
Введенная здесь температурная шкала называется шкалой Кельвина, а единица измерения, совпадающая с градусом шкалы Цельсия, называется кельвином и обозначается буквой К. Иногда эта шкала называется Международной практической шкалой температуры. При использовании температурной шкалы Кельвина график закона Гей-Люссака принимает вид, показанный на рис. 48, а формулы (2) и (3) можно записать в виде
Рис. 47. Выражаемая законом Гей-Люссака зависимость объема газа от температуры при постоянном давлении
Рис. 48. График закона Гей-Люссака в температурной шкале Кельвина Коэффициент пропорциональности Уравнение состояния газа. Экспериментальные газовые законы дают возможность установить уравнение состояния газа. Для этого достаточно воспользоваться любыми двумя из приведенных законов. Пусть некоторое количество газа находится в состоянии с объемом
Теперь переведем газ из промежуточного состояния в конечное состояние с тем же значением объема
поскольку
Мы изменили все три макроскопических параметра В приведенном выводе уравнения (9) не использовался закон Гей-Люссака. Однако легко видеть, что в нем содержатся все три газовых закона. Действительно, полагая в Уравнение Менделеева-Клапейрона. Возьмем один моль газа при нормальных условиях, т. е. при
С учетом (10) уравнение состояния одного моля любого газа можно записать в виде
Уравнение (11) легко обобщить для произвольного количества газа. Так как при тех же значениях температуры и давления
В таком виде уравнение состояния газа впервые было получено русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева—Клапейрона. Идеальный газ. Уравнение состояния газа (11) или (12) было получено на основе установленных на опыте газовых законов. Эти законы выполняются приближенно: условия их применимости различны для разных газов. Например, для гелия они справедливы в более широком диапазоне температур и давлений, чем для углекислого газа. Приближенным является и уравнение состояния, полученное из приближенных газовых законов. Введем в рассмотрение физическую модель — идеальный газ. Под этим будем понимать систему, для которой уравнение (11) или (12) является точным. Замечательной особенностью идеального газа является то, что его внутренняя энергия пропорциональна абсолютной температуре и не зависит от объема, занимаемого газом. Как и во всех других случаях использования физических моделей, применимость модели идеального газа к тому или иному реальному газу зависит не только от свойств самого газа, но и от характера вопроса, на который требуется найти ответ. Такая модель не позволяет описать особенности поведения различных газов, но выявляет свойства, общие для всех газов. С применением уравнения состояния идеального газа можно познакомиться на примере конкретных задач. Задачи1. В одном баллоне объемом Решение. После открывания крана газ из баллона с более высоким давлением будет поступать в другой баллон. В конце концов давление в баллонах выравняется, а газы перемешаются. Даже если в процессе перетекания газов температура изменилась, после установления теплового равновесия она снова сравняется с температурой окружающего воздуха. Для решения задачи можно воспользоваться уравнением состояния идеального газа. Обозначив через
В конечном состоянии смесь газов содержит
Выражая
В частном случае, когда исходные давления газов одинаковы, давление смеси после установления равновесия остается таким же. Интересен предельный случай Обратим внимание на то, что выражаемый формулой (15) результат соответствует тому, что давление смеси газов равно сумме парциальных давлений каждого из газов, т. е. давлений, которые имел бы каждый из газов, занимая при той же температуре весь объем. Действительно, парциальные давления
Видно, что полное давление 2. Истопив печь, в дачном домике температуру воздуха повысили от 0 до Решение. Ясно, что объем помещения при протапливании печи не изменился, так как тепловым расширением стен можно пренебречь. Если бы мы нагревали воздух при неизменном объеме V в закрытом сосуде, его давление возросло бы, но плотность осталась бы неизменной. Но дачный домик не герметичен, поэтому неизменным остается давление Подсчитать плотность воздуха проще всего, основываясь на уравнении состояния:
где
При неизменном давлении плотность обратно пропорциональна абсолютной температуре. Поэтому для отношения плотностей
3. В бутылку емкостью Решение. При расширении воздуха в бутылке его давление, равное сумме атмосферного давления и гидростатического давления столбика воды в трубке, остается неизменным, пока вода не выливается из трубки. Поэтому, в соответствии с законом Гей-Люссака, объем воздуха в бутылке пропорционален абсолютной температуре:
В данном случае
Поскольку внутренний объем трубки много меньше объема бутылки, то при расчетах можно в (19) заменить объем воздуха V на емкость бутылки
Полагая для оценки • Что такое время релаксации для термодинамической системы? • Какие ограничения должны быть наложены на скорость протекания процессов в газе, чтобы в любой момент времени имели смысл макроскопические параметры • Чем определяется числовое значение константы в правой части уравнения закона Бойля—Мариотта (1)? • Что имеют в виду, когда говорят, что изучаемая система находится в контакте с термостатом? • Предложите способ проверки закона Бойля—Мариотта с помощью описанного в тексте прибора (см. рис. 45). • Какие преимущества дает выбор газа в качестве термометрического тела? • Как связан выбор начала отсчета температур в шкале Кельвина со значением температурного коэффициента расширения газа? • Как устанавливается связь температур, измеренных по шкале Цельсия и шкале Кельвина? • Выведите уравнение состояния газа, используя законы Бойля—Мариотта и Гей-Люссака. • Уравнение Клапейрона было получено с использованием только двух газовых законов, однако содержит в себе все три закона. Как это связано с тем фактом, что у газов температурные коэффициенты давления и объема одинаковы? • Что такое универсальная газовая постоянная? Как она связана с законом Авогадро? • Какую физическую систему называют идеальным газом? Чем определяются условия применимости этой модели? От чего зависит внутренняя энергия идеального газа? • Можно ли объяснить установленный на опыте закон Дальтона для смеси газов, опираясь на уравнение Менделеева—Клапейрона? • Оцените массу воздуха, выходящего из щелей отапливаемого помещения объемом • Как изменится чувствительность к изменениям температур простого устройства, описанного в задаче 3, если верхнее отверстие трубки заткнуть?
|
1 |
Оглавление
|