Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
4.3.3. Схемы сокращения избыточности изображений с обработкой в области преобразованийДля пояснения основных операций, выполняемых системой сжатия видеоинформации с обработкой в области преобразований, обратимся к ковариационной матрице, определяемой соотношением (4.20). Матрица
где Преобразование координат, определяемое матрицей собственных векторов
и пусть собственные векторы, связанные с ними, расставлены в том же порядке. Тогда матрица собственных векторов
имеющий некоррелированные компоненты, причем компоненты вектора Полезность преобразования Карунена — Лоэва
восстанавливается исходное изображение. В процессе сжатия возникает средняя квадратическая ошибка
особенность КЛ-преобразования состоит в том, что из всех линейных преобразований именно оно обеспечивает минимальную величину этой ошибки. Из соотношений (4.25) и (4.26) видно, что число операций, необходимых для выполнения КЛ-преобразования, пропорционально Еще труднее вычислить собственные значения и собственные векторы ковариационной матрицы
где Хотя разложение изображения на блоки и делает сжатие видеоинформации методом КЛ-преобразования реально осуществимым процессом, но эффективность его остается недостаточной. Большой объем вычислений препятствует использованию подобных методов для обработки изображений типа телевизионных. Создание алгоритмов быстрых преобразований (Фурье, Адамара и т. д.) существенно повлияло на многие области применения цифровой обработки сигналов. Аналогичным образом оно сказалось и на методах сокращения избыточности изображений. Любое линейное преобразование, подобное разложению Карунена — Лоэва, переводит изображение в новую систему координат. В силу свойств КЛ-преобразования случайные компоненты изображения в новых координатах оказываются некоррелированными. Резонно спросить: будут ли другие преобразования, особенно быстрые типа БПФ, обладать такими же полезными свойствами? К счастью, ответ оказывается положительным. Хотя быстрые преобразования и не приводят к полной некоррелированности компонент, как в случае КЛ-преобразования, но все же они дают очень хорошие результаты. Их достоинства, связанные с быстротой вычислений, полностью компенсируют некоторое понижение эффективности сжатия, характерное для них. Схемы сжатия на основе быстрых преобразований можно описать примерно так же, как и схемы с КЛ-ореобразованием. Дополнительным достоинством быстрых алгоритмов является их разделимость, так что двумерные преобразования можно выполнить с помощью одномерных операций. Кроме того, их проще описать математически. Если матрица
где
где второе равенство является следствием разделимости ядра преобразования. Свойством разделимости обладает ядро преобразования Фурье, наиболее часто применяемого на практике:
а также ядра менее известных преобразований, таких, как преобразования Адамара и Хаара. Более подробно этот вопрос рассмотрен в работе Эндрюса [31]. Собственные значения проекциям вектора-изображения на оси координат, полученным с помощью матрицы преобразования Для иллюстрации рассмотрим схему сжатая в пространстве лреобразований, основанную на преобразовании Фурье. Из соотношений (4.31) и (4.32) видно, что (ту
Для типичных изображений характерно, что в области пространственных частот элементы с малыми индексами велики по сравнению с элементами с большими индексами. Таким образом, структура изображения обычно имеет низкочастотный характер. Низкочастотные составляющие определяют контуры предметов, а также яркость и контрастность изображения. Высокочастотные составляющие создают резкие линии и определяют общую четкость изображения, но суммарная энергия их невелика. Так, 95% энергии типичного изображения может приходиться на низкочастотные составляющие, занимающие 5% от общей площади двумерной пространственно-частотной области преобразования Фурье. Сохраняя эти спектральные составляющие и достаточна много высокочастотных компонент, чтобы резкость изображения была приемлема для человеческого глаза, можно добиться существенного уменьшения объема избыточной информации. После того как установлено, что основной принцип сжатия в пространстве преобразований заключается в избирательном сохранении коэффициентов разложения, задача создания системы сжатия изображений может показаться нетрудной. Сложность построения подобных схем кодирования обусловлена необходимостью сравнения свойств операторов различных преобразований и создания методов выбора коэффициентов преобразования, которые следует оставить. Кроме того, задача усложняется квантованием выбранных коэффициентов и кодированием квантованных чисел. Ниже приведены краткие результаты исследований, Был исследован ряд алгоритмов быстрого преобразования, таких, как преобразования Фурье, Адамара, Хаара 1. Ни один из алгоритмов быстрого преобразования не обеспечивает оптимальной эффективности сжатия изображения, какая получается при использовании преобразования Карунена — Лоэва. 2. По таким критериям качества, как средняя квадратическая ошибка, ближайшим к преобразованию Карунена — Лоэва оказывается слэнт-преобразование, а за ним следуют по порядку преобразования Фурье, Адамара и Хаара, причем сравнение выполнялось для изображений небольшого формата, например 3. Разница между наилучшими показателями слэнт-преобразования и наихудшими показателями преобразования Хаара (как по субъективным, так и по объективным критериям) невелика. Коэффициенты преобразования, которые необходимо сохранить и передать, можно выбрать двумя способами. При пороговой дискретизации устанавливается некоторый уровень (определяемый, как правило, на основе полной средней квадратической ошибки), и коэффициенты, его превышающие, сохраняются для передачи, а все остальные отбрасываются. При зонной дискретизации в пространстве преобразований размещается маска (трафарет) и элементы, попавшие в нее, сохраняются, а остальные отбрасываются. Операции, выполняемые в ходе преобразования, обычно упорядочиваются в соответствии с некоторым обобщенным индексом (частотой или порядком базисной функции), и коэффициенты преобразования выстраиваются в ряд в порядке увеличения сложности (т. е. числа колебаний на единицу длины) базисных векторов, причем энергия изображения концентрируется в области низких частот или малых порядков. Следовательно, зонная дискретизация эквивалентна обобщенной низкочастотной фильтрации изображения. Пороговая дискретизация, напротив, позволяет выделить значительные коэффициенты преобразования, расположенные где-либо в пространстве преобразований. В результате оказалось, что пороговая дискретизация при одинаковом числе отброшенных коэффициентов дает более высокое качество восстановленного изображения, чем зонная дискретизация. К сожалению, в схемах с пороговой дискретизацией вместе с каждым отсчетом необходимо передавать и его местоположение в пространстве преобразований. По этой причине объем передаваемой информации может заметно возрасти, если положения отсчетов передаются простыми кодами. Однако коды с переменной длиной дают возможность передать адрес при небольшом увеличении числа разрядов кода 32]. Отсчеты, выбранные из пространства преобразований, необходимо, квантовать. К сожалению, обычно они имеют гораздо больший динамический диапазон, чем исходные отсчеты в пространстве преобразований, что подтверждает, например, опыт работы с преобразованием Фурье. Такое явление наводит на мысль об использовании чисел с переменной разрядностью, зависящей от значения коэффициента, но это значительно усложняет процесс обработки. Кроме того, для создания устройства квантования, дающего минимальный шум квантования, необходимо знать плотность вероятности значений отсчетов. Исследования плотности вероятности отсчетов в пространстве преобразований [32, 33] показали, что наилучший компромисс между простотой и точностью обеспечивает квантование, основанное на гауссовской плотности, при фиксированной разрядности отсчетов. В этом случае удается получить высококачественные восстановленные изображения, если число уровней квантования составляет всего 64 (6 разрядов) Способ кодирования коэффициентов разложений зависит от примененного алгоритма выбора коэффициентов. Как уже отмечалось, при пороговой дискретизации необходимо, чтобы код содержал адрес отсчета в пространстве преобразования, причем на каждый отсчет отводится фиксированное число разрядов кодовой комбинации. При зонной дискретизации попользуется низкочастотный характер изображения, т. е. тот факт, что коэффициенты разложения, соответствующие низким частотам (или малым порядкам базисных векторов), имеют большую величину, чем высокочастотные коэффициенты. Этим можно воспользоваться, уменьшая число разрядов кода, отводимых на отсчет, по мере перехода от низких частот к высоким (кликните для просмотра скана) а порядок выбора и передачи отсчетов внутри зоны может быть зафиксирован. В целом сокращение избыточности путем обработки в пространстве преобразований (т. е. преобразование, выбор коэффициентов, их квантование и кодирование) позволяет получить хорошие результаты. На рис. 4.10 сравниваются несколько разных преобразований. Изображения на рис. 4.9 и 4.10 состоят
|
1 |
Оглавление
|