Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
6.3.2. Обработка, учитывающая особенности водной среды. Каналы с размытием и протяженные цели. Функции рассеянияРаспространение акустических сигналов в воде сопровождается высоким уровнем реверберации, ярко выраженной многолучевостью и доплеровским размытием. Физические основы этих явлений уже были рассмотрены выше. Однако для целей обработки важно уметь их моделировать. В данном случае нас интересует возможность моделирования явлений двух типов (явления третьего типа, имеющие отношение к обработке сигналов антенной решетки, будут рассмотрены в разд. 6.4). Явления первого типа связаны с многолучевостью и наличием ложных целей, распределенных по дальности; они называются размытием по дальности. В результате после излучения короткого импульса на приемник поступает сигнал в течение некоторого времени. Причиной может быть то, что звук в воде от цели или отражателей вблизи нее распространяется по разным трассам. Явления второго типа связаны с размытием по дальности и обусловлены отражением звука от движущихся целей или распространением его через движущуюся среду. Эти явления называются доплеровским размытием, так как после излучения гармонического сигнала принятая энергия оказывается распределенной в некотором диапазоне частот. Основной способ описания акустических каналов с размытием заключается в моделировании их с помощью фильтра, параметры которого изменяются во времени случайным образом. Элемент случайности вводится потому, что редко имеются достаточно подробные сведения об акустических свойствах окружающей среды и относительной геометрии передатчика, канала, цели и приемника, чтобы можно было использовать детерминированное описание. В результате при моделировании каналов или целей приходится вводить элемент случайности и пытаться описать средние характеристики размытия. Для этого обычно используется функция рассеяния или, например, двухчастотная корреляционная функция [41, 44-47]. Функция рассеяния характеризует статистическое распределение энергии после излучения импульса по дальности и доплеровскому смещению, а двухчастотная корреляционная функция — коэффициент корреляции между компонентами на смежных частотах при условии, что излучается гармонический сигнал. Модель канала или цели, в которой учитывается размытие сигнала, описывается выражением
где сигнала), Метод описания случайных каналов и среды распространения, основанный на использовании функции рассеяния, применялся многими исследователями в различных областях техники [44— 50, 41, 51—53]. Тем не менее, несмотря на существенные различия описываемых сред, в целом используемые при этом предположения имеют много общего (наиболее общий подход описан в работе [47]). К числу наиболее важных относятся предположения о стационарности и некоррелированности рассеяния. Предположение о стационарности означает, что рассеяние (или отражение) в дальностном интервале представляет собой стационарный случайный процесс (в частности, он может быть постоянным, если в канале не создается доплеровского размытия). Предположение о некоррелированности означает, что рассеяние (или отражение) некоррелировано по дальности. Используя оба эти предположения, запишем следующее выражение для ковариации реверберационного сигнала:
где в этом случае функция рассеяния записывается в виде
Физический смысл этой функции заключается в следующем: она дает статистическое описание перераспределения энергии по дальности и доплеровскому смещению.
Рис. 6.15. Функция рассеяния моря, типичная для летних условий и глубины» 0,6-1,2 м (из [53]). Если выполнить преобразование Фурье по запаздыванию, то будет получена двухчастотная корреляционная функция
Она описывает корреляцию сигналов после рассеяния как функцию частоты. Акустический канал создает в основном размытие по дальности, хотя может быть существенным и размытие по доплеровскому смещению, обусловленное водной поверхностью и движущимися целями. Существует сильная связь между методом использования канала и типом трасс распространения акустических волн. В последние годы было проведено много экспериментов с целью измерения функций рассеяния акустических сигналов. Некоторые результаты, относящиеся к сравнительно небольшим дальностям при однолучевом распространении акустических волн, в качестве иллюстрации представлены на рис. 6.15. При использовании моделей функции рассеяния для проектирования системы обработки сигналов активного гидролокатора следует учитывать несколько важных моментов. Необходимо, чтобы и модель рассеяния мешающего реверберационного шума, и модель отражения от цели были описаны достаточно строго. Кроме того, проектирование гидролокационных систем, предназначенных для обнаружения целей, измерения дальностей до них и доплеровского смещения, а также систем связи требует в каждом случае особого подхода. На рис. 6.16 представлены алгоритмы обработки сигналов для перечисленных выше случаев, учитывающие модели среды. Если для обнаружения медленно перемещающейся цели в присутствии реверберационного шума используется коррелятор или согласованный фильтр, представляющий собой, как правило, подоптимальное устройство, то отношение сигнал/шум описывается формулой
где (кликните для просмотра скана) Рис. 6.17. (см. скан) а — перекрытие функции рассеяния с функциями неопределенности монохроматического и ЛЧМ-импульсов при реверберации, распределенной по дальности: б - ухудшение характеристик для случая, соответствующего а, в зависимости от отношения полос сигнала и шума реверберации частотно-модулированных сигналов имеет определенные преимущества. Так, на рис. 6.17, а сопоставлены области перекрытия для монохроматического импульса и ЛЧМ-импульса одинаковой длительности. Для ЛЧМ-импульса уменьшение перекрытия примерно пропорционально базе ЛЧМ-импульса можно свести к минимуму. Однако частотно-модулированные сигналы не всегда имеют преимущества. Действительно, если между эхо-сигналом от цели и реверберационным сигналом имеется доплеровское смещение, целесообразно, чтобы функция неопределенности была узкой вдоль доплеровской оси, как это имеет место для сигналов без частотной модуляции. Более подробно задача оптимизации сигнала рассмотрена в [41]. При обнаружении распределенных целей, а также в системах подводной акустической связи требуется несколько более сложная обработка, чем простой корреляционный прием, используемый применительно к точечным целям. В этих случаях приемник, близкий к оптимальному, включает корреляционные приемники для каждого из разрешаемых элементов дальность — доплеровское смещение. Общий выходной сигнал представляет собой сумму выходных сигналов всех корреляционных приемников. Разрешающую способность и число разрешаемых элементов можно найти, используя функцию рассеяния и двухчастотную корреляционную функцию зондирующего колебания. Коэффициент корреляции между выходными сигналами двух согласованных фильтров (т. е. корреляторов), соответствующих координатам
Структура приемника, выполнящего обработку, соответствующую этому выражению и учитывающую влияние водной среды, представлена на рис. 6.16, б. Здесь проводится элементарное некогерентное сложение выходных сигналов фильтров всех разрешаемых дальностно-доплеровских элементов, взвешенных с учетом интенсивностей рассеяния в этих элементах. Затем для принятия окончательного решения выполняется пороговый анализ. Как в системах обнаружения протяженных целей, так и в системах подводной акустической связи для описания влияния цели и среды распространения на акустический сигнал приходится учитывать все возможные трассы распространения. Различие между системами этих двух типов проявляется в основном в способах использования канала и выявления трасс распространения. В системах обнаружения излучается один и тот же сигнал, а задача сводится к выявлению только тех разрешаемых элементов (корреляционных приемников), сигнал которых обусловлен энергией, отраженной от цели. В системах связи излучаются различные сигналы, соответствующие разным сообщениям и отличающиеся, как правило, частотами, а задача сводится к выявлению всех трасс распространения сигнала. Нетрудно убедиться в том, что, выбрав подходящие сигналы, можно существенно улучшить характеристики систем обнаружения и связи. Для систем обнаружения в общем случае наиболее подходящими оказываются сигналы, обеспечивающие разрешение целей по максимальному числу отличительных признаков. Несколько сложнее обстоит дело с системами связи, для которых задача синтеза наилучших сигналов сводится к обеспечению оптимальной различимости в канале. Это означает, что при заданной излучаемой энергии существует оптимальное число разрешаемых трасс (детально вопросы оптимальной различимости рассмотрены в работах [41, 48]). Количественный анализ характеристик систем и вычисление отношения сигнал/шум или вероятностей ошибок могут быть весьма трудными задачами. Для большинства систем они сводятся к анализу Прежде чем перейти к особенностям обработки последовательностей импульсов, описываемой в разд. 6.3.3, рассмотрим обработку сигналов с учетом окружающей среды в системах измерения дальности до цели и доплеровского смещения сигнала от цели. Задачи измерения и обнаружения имеют много общего. Пытаясь определить координаты цели, оператор, как правило, проводит поиск по всей дальностно-доплеровской плоскости. Задача сводится к выявлению отражений от цели с использованием любых отличительных признаков, связанных с отражениями. После этого решается задача разделения сигнала, отраженного от цели, и реверберационного сигнала, с тем чтобы можно было определить дальностно-доплеровские координаты и ЭПР цели. Для выделения отличительных признаков цели необходимо использовать сигналы, обеспечивающие высокую разрешающую способность. К сожалению, в случае протяженных целей решение Таблица 6.2. (см. скан) Классификация моделей цели Сверлинга для случая совместной обработки последовательности импульсов перечисленных задач значительно сложнее, так как для них неприменимы методы анализа сигналов от медленно движущихся точечных целей, основанные на использовании границ Рао - Крамера и функции неопределенности сигналов. В заключение подчеркнем, что акустическая среда действительно накладывает ряд существенных ограничений на решение задач гидроакустики. В большинстве случаев ее влияние оказывается весьма сложным и к тому же заметно изменяется во времени, поэтому необходимо, чтобы устройства обработки с учетом влияния среды были как можно более универсальными. Уже сейчас для обеспечения этой универсальности все более широко используются цифровые устройства обработки сигналов.
|
1 |
Оглавление
|