Главная > Электротехника
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.8. ИЗМЕНЕНИЕ МАГНИТНОГО ПОЛЯ СОЗДАЕТ ЭЛЕКТРОДВИЖУЩУЮ СИЛУ

В начале прошлого столетия получили распространение первые электрохимические источники тока. Их появление привело к ряду важных открытий. К их числу относятся открытие электрической дуги и открытие магнитных проявлений тока — электрический ток способен вызвать отклонение магнитной стрелки; провода с электрическим током взаимно отталкиваются или притягиваются.

Ряд этих открытий завершился знаменитым опытом Фарадея (1831), значение которого для развития электротехники было исключительно большим.

Проведение опыта Фарадея схематически показано на рис. 2.18-2.22. В таком виде его нетрудно осуществить.

На трубку из плотного картона нанесены две обмотки. Первая из них может соединяться с источником тока, например с аккумулятором. Вторая обмотка изолирована от первой, т. е. между этими обмотками нет электрического соединения (нет контакта). Цепь второй обмотки замкнута на магнитоэлектрический прибор.

Самое существенное в постановке опыта заключается в следующем: вторая обмотка находится в магнитном поле первой, конечно, когда в первой обмотка есть электрический ток.

Рис. 2.18. Опыт Фарадея. В первой (1) обмотке проходит ток (цепь аккумулятора замкнута). Вторая (2) обмотка находится в магнитном поле первой обмотки. Несмотря на это тока в цепи второй обмотки нет: стрелка амперметра стоит на нуле

Фарадей искал ответа на вопрос: не вызывает ли магнитное поле первой обмотки возникновение электрического тока во второй? Для того чтобы получить ответ на этот вопрос, в цепь второй обмотки и включен чувствительный амперметр (гальванометр).

Картина, изображенная на рис. 2.18, дает, казалось бы, отрицательный ответ. Магнитное поле изменяется включением и выключением тока. Но проведем более тщательно наши наблюдения, сосредоточив внимание на стрелке амперметра как раз в то время, когда цепь первой обмотки разрывается (рис. 2.19) или, наоборот, замыкается (рис. 2.20). В этом случае можно заметить, что при разрыве цепи первой обмотки во второй обмотке возникает ток. Этот ток длится недолго — стрелка слегка отклонится вправо и вновь вернется в нулевое положение (рис. 2.19).

Точно так же можно заметить возникновение тока во второй обмотке при включении тока в цепь первой обмотки (рис. 2.20).

И этот ток длится недолго — стрелка слегка отклонится влево и вновь вернется в исходное (нулевое) положение.

В чем же различие между первым наблюдением (рис. 2.18) и двумя последующими?

В первом наблюдении мы имели дело с неизменным током в первой обмотке, а следовательно, и с неизменным магнитным полем.

Электрический ток может возникать в замкнутой цепи, если ее провода находятся в изменяющемся магнитном поле.

Рис. 2.19, Опыт Фарадея. Ток первой обмотки разрывается. Магнитное поле, в котором находится вторая обмотка, изменяется (оно исчезает). Стрелка амперметра, включенного в цепь второй обмотки, слегка отбрасывается вправо и быстро возвращается в исходное (нулевое) положение. Под действием изменяющегося магнитного поля возникает ток

Рис. 2.20. Опыт Фарадея. Производится включение тока в цепь первой обмотки. Магнитное поле, в котором находится вторая обмотка, изменяется (поле возникает). Стрелка амперметра, включенного в цепь второй обмотки, слегка отбрасывается влево и быстро возвращается в исходное положение. Под действием изменяющегося магнитного поля возникает ток

Но если в цепи проводов возникает ток, значит, в цепи действует ЭДС (вспомним второй закон Кирхгофа, § 1.20).

Другими словами:

в проводах электрической цепи при изменении магнитного поля возникает (наводится) ЭДС.

Магнитное поле изменяется введением стали. Магнитное поле можно изменять не только посредством изменения тока. Мы знаем, что внесение железа усиливает поле. Значит, если внутрь нашей картонной трубы внести пакет из стальных пластин (рис. 2.21), то магнитное поле, создаваемое первой катушкой, усилится.

Рис. 2.21. При вдвигании пакета стальных пластин магнитное поле усиливается. Стрелка амперметра, включенного в цепь второй обмотки, отклоняется влево, как это наблюдается и при включении тока (см. рис. 2.20)

Рис. 2.22. При удалении стержневого магнита от обмотки, замкнутой на амперметр, в обмотке возникает ЭДС

Возникает ли ЭДС во второй обмотке при вдвигании пакета?

Опыт дает утвердительный ответ (рис. 2.21). Обратим внимание на то, что при вдвигании стали стрелка прибора отклоняется в ту же сторону, что и при включении тока.

При выдергивании стального пакета стрелка отклоняется в ту же сторону, что и при выключении тока (в обоих случаях магнитное поле уменьшается).

Магнитное поле изменяется из-за перемещения самой катушки. Рассмотрим еще один опыт. Магнитное поле создается обмоткой со стальным сердечником. Ток в обмотке поддерживается аккумулятором. Вторая обмотка намотана на независимый картонный каркас (картонное кольцо). Эта обмотка замкнута через гибкий шнур на измерительный прибор и не имеет никакого электрического соединения с цепью первой обмотки.

В цепи второй обмотки возникает ЭДС, когда она удаляется из поля, создаваемого первой обмоткой.

Магнитное поле изменяется из-за перемещения постоянного магнита. Рассмотрим еще один опыт, понятие о котором дает рис. 2.22.

При удалении стержневого магнита в неподвижной обмотке наводится ЭДС.

Этот опыт показывает, что ЭДС действительно наводится именно изменением магнитного поля, а не взаимодействием токов, как могло бы казаться, например, из опытов, изображенных на рис. 2.19 и 2.20.

Дальнейшие наблюдения позволили установить много новых фактов, которые в конце концов удалось обобщить, а также важные общие законы.

1
Оглавление
email@scask.ru