Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 4.17. ИЗГИБ БАЛОКПри прямом чистом изгибе бруса в его поперечных сечениях возникают только нормальные напряжения. Когда величина изгибающего момента М в сечении стержня меньше некоторого значения, эпюра, характеризующая распределение нормальных напряжений вдоль оси у поперечного сечения, перпендикулярной нейтральной оси (рис. 11.17, а), имеет вид, показанный на рис. 11.17, б. Наибольшие напряжения при этом равны При увеличении изгибающего момента сверх опасного значения напряжения, равные пределу текучести
Рис. 11.17. При дальнейшем увеличении изгибающего момента пластическая зона распространяется в сторону нейтральной оси, а размеры упругой зоны уменьшаются. При некотором предельном значении изгибающего момента В отличие от идеального шарнира, который не воспринимает момента, в пластическом шарнире действует постоянный момент Для определения величины предельного изгибающего момента Элементарная нормальная сила, действующая на площадку
где Сумму
Следовательно,
Продольная сила в поперечном сечении при изгибе равна нулю, а потому площадь сжатой зоны сечения равняется площади растянутой зоны. Таким образом, нейтральная ось в сечении, совпадающем с пластическим шарниром, делит это поперечное сечение на две равновеликие части. Следовательно, при несимметричном поперечном сечении нейтральная ось не проходит в предельном состоянии через центр тяжести сечения. Определим по формуле (11.17) величину предельного момента
Опасное значение момента
Отношение
Для круглого сечения отношение Если изгибаемый брус является статически определимым, то после снятия нагрузки, вызвавшей в нем момент Изгибающий момент М, соответствующий эпюре напряжений, показанный на рис. 11.17, е, по абсолютной величине равен
Суммируя эпюры напряжений, показанные на рис. 11.17, д,е, получаем эпюру, изображенную на рис. 11.17, ж. Эта эпюра характеризует распределение напряжений после снятия нагрузки, вызывавшей момент Изложенная теория изгиба за пределом упругости используется не только в случае чистого изгиба, но и в случае поперечного изгиба, когда в поперечном сечении балки кроме изгибающего момента действует также поперечная сила. Определим теперь предельное значение силы Р для статически определимой балки, изображенной на рис. 12.17, а. Эпюра изгибающих моментов для этой балки показана на рис. 12.17,б. Наибольший изгибающий момент При этом изгибающий момент в сечении под грузом Из условия
откуда
Теперь вычислим предельную нагрузку для статически неопределимой балки. Рассмотрим в качестве примера два раза статически неопределимую балку постоянного сечения, изображенную на рис. 13.17, а. Левый конец А балки жестко защемлен, а правый конец В закреплен против поворота и вертикального смещения.
Рис. 12.17 Если напряжения в балке не превышают предела пропорциональности, то эпюра изгибающих моментов имеет вид, показанный на рис. 13.17, б. Она построена по результатам расчета балки обычными методами, например с помощью уравнений трех моментов. Наибольший изгибающий момент равный Увеличение нагрузки сверх указанной величины приводит к тому, что в левом опорном сечении А изгибающий момент становится равным предельному значению При дальнейшем возрастании нагрузки до некоторого значения Величину предельной нагрузки Значения изгибающих моментов в сечениях. А, В и С (в которых возникают пластические шарниры) в предельном состоянии равны соответственно
Рис. 13.17 Известно, что сила Р, действующая на простую балку, вызывает в сечении под грузом изгибающий момент где а и
Но этот момент, как показано (рис. 13.17, е), равняется
откуда
Аналогичным образом устанавливаются предельные нагрузки для каждого пролета многопролетной статически неопределимой балки. В качестве примера рассмотрим четырежды статически неопределимую балку постоянного сечения, изображенную на рис. 14.17, а. В предельном состоянии, соответствующем полному исчерпанию несущей способности балки в каждом ее пролете, эпюра изгибающих моментов имеет вид, показанный на рис. 14.17, б. Эту эпюру можно рассматривать состоящей из двух эпюр, построенных в предположении, что каждый пролет представляет собой простую балку, лежащую на двух опорах: одной эпюры (рис. 14.17, в), вызванной моментами
Рис. 14.17 Из рис. 14.17, г устанавливаем:
В этих выражениях Полученное значение предельной нагрузки для каждого пролета балки не зависит от характера и величин нагрузок в остальных пролетах. Из разобранного примера видно, что расчет статически неопределимой балки по несущей способности оказывается проще, чем расчет по упругой стадии. Несколько иначе проводится расчет неразрезной балки по несущей способности в тех случаях, когда кроме характера нагрузки в каждом пролете задаются также соотношения между величинами нагрузок в разных пролетах. В этих случаях предельной нагрузкой считается такая, при которой происходит исчерпание несущей способности балки не во всех пролетах, а в одном из ее пролетов. В качестве примера определим предельную нагрузку для уже рассмотренной четырехпролетной балки (рис. 14.17, а) при следующем заданном соотношении между нагрузками:
Используя полученные выражения предельных нагрузок каждого пролета, находим:
Полученные четыре значения
Предельно допускаемая нагрузка определяется путем деления величин Значительно сложнее определение предельных нагрузок при действии на балку сил, направленных не только сверху вниз, но также и снизу вверх, а также при действии сосредоточенных моментов.
|
1 |
Оглавление
|