Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА XIII. СИММЕТРИЯ КРИСТАЛЛОВ§ 128. Элементы симметрии кристаллической решеткиНаиболее распространенные свойства симметрии макроскопических тел заключаются в симметрии расположения частиц в них. Движущиеся атомы и молекулы не занимают точно определенных мест в теле, и для строгого статистического описания их расположения нужно ввести функцию плотности Если тело состоит из различных атомов, то функция Наиболее высокой симметрией обладают изотропные тела — тела, свойства которых по всем направлениям одинаковы; сюда относятся газы и жидкости (и аморфные твердые тела). Очевидно, у такого тела для каждой частицы все ее положения в пространстве во всяком случае должны быть равновероятными, т. е. должно быть Напротив, в анизотропных твердых кристаллах функция плотности отнюдь не сводится к постоянной. Она представляет собой в этом случае троякопериодическую функцию (с периодами, равными периодам кристаллической решетки) и имеет резкие максимумы в точках, соответствующих узлам решетки. Наряду с трансляционной симметрией решетка (т. е. функция (х, у, z) обладает, вообще говоря, симметрией также и по отношению к различным поворотам и отражениям. Узлы, которые могут быть совмещены друг с другом путем какого-либо преобразования симметрии, называют эквивалентными. Приступая к изучению симметрии кристаллической решетки, следует начать с выяснения того, из каких элементов эта симметрия может складываться. Основу симметрии кристаллической решетки составляет ее пространственная периодичность свойство совмещаться сама с собой при параллельных переносах (или, как говорят, трансляциях) на определенные расстояния в определенных направлениях; о трансляционной симметрии подробно будет идти речь в следующем параграфе. Наряду с трансляционной симметрией решетка может обладать также и симметрией по отношению к различным поворотам и отражениям; соответствующие элементы симметрии (оси и плоскости симметрии, зеркально-поворотные оси) - те же, которыми могут обладать и симметричные тела конечных размеров (см. III, § 91). Сверх того, однако, кристаллическая решетка может обладать еще и особого рода элементами симметрии, представляющими собой комбинации параллельных переносов с поворотами и отражениями. Рассмотрим сначала комбинацию трансляций с осями симметрии. Комбинирование оси симметрии с параллельным переносом вдоль направления, перпендикулярного к оси, не приводит к новым типам элементов симметрии. Легко убедиться в том, что поворот на некоторый угол с последующим переносом в перпендикулярном к оси направлении равносилен простому повороту на тот же угол вокруг другой оси, параллельной первой. Комбинирование же поворота вокруг оси с параллельным переносом вдоль этой же оси приводит к элементам симметрии нового типа винтовым осям. Решетка обладает винтовой осью n-го порядка, если она совмещается сама с собой при повороте вокруг оси на угол Производя Это значит, что винтовая ось
где а — наименьший период решетки в направлении оси. Так, винтовая ось 2-го порядка может быть только одного типа — с переносом на половину периода; винтовые оси 3-го порядка могут быть связаны с переносом на 1/3 и 2/3 периода и т. д. Аналогично можно скомбинировать трансляции с плоскостью симметрии. Отражение в плоскости вместе с трансляцией вдоль направления, перпендикулярного к плоскости, не приводит к новым элементам симметрии, так как такое преобразование, как легко убедиться, равносильно простому отражению в другой плоскости, параллельной первой. Комбинирование же отражения с переносом вдоль направления, лежащего в самой плоскости отражения, приводит к новому типу элементов симметрии так называемым плоскостям зеркального скольжения. Решетка обладает плоскостью зеркального скольжения, если она совмещается сама с собой при отражении в этой плоскости и одновременном переносе на определенное расстояние d в определенном направлении, лежащем в этой же плоскости. Двукратное отражение в плоскости зеркального скольжения приводит к простому переносу на расстояние Что касается зеркально-поворотных осей, то их комбинирование с трансляциями не приводит к новым типам элементов симметрии. Действительно, всякий перенос в этом случае можно разложить на две части, из которых одна перпендикулярна к оси, а другая параллельна ей, т. е. перпендикулярна к плоскости отражения. Поэтому зеркально-поворотное преобразование с последующим переносом всегда эквивалентно такому же простому преобразованию вокруг другой зеркально-поворотной оси, параллельной первой.
|
1 |
Оглавление
|