Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5. Статистическая матрицаПереходя к вопросу об особенностях квантовой статистики, отметим, прежде всего, что чисто механический подход к задаче об определении поведения макроскопического тела в квантовой механике, разумеется, столь же безнадежен, как и в классической механике. При таком подходе требовалось бы решать уравнение Шредингера для системы, состоящей из всех частиц тела, — задача, если можно так выразиться, еще более безнадежная, чем интегрирование классических уравнений движения. Но даже, если бы оказалось возможным в том или ином случае найти общее решение уравнения Шредингера, было бы абсолютно невозможным выбрать и записать удовлетворяющее данным конкретным условиям задачи частное решение, характеризующееся определенными значениями грандиозного числа различных квантовых чисел. Больше того, мы увидим ниже, что для макроскопического тела понятие о стационарных состояниях вообще становится в известном смысле условным, — обстоятельство, имеющее существенное, принципиальное значение. Выясним предварительно некоторые особенности, которые характеризуют с чисто квантовомеханической точки зрения макроскопические тела по сравнению с системами, состоящими из сравнительно малого числа частиц. Эти особенности сводятся к необычайной густоте распределения уровней в спектре собственных значений энергии макроскопического тела. Причину такой густоты легко понять, если заметить, что благодаря колоссальному числу частиц в теле всякая энергия может быть, грубо говоря, «распределена» по различным частицам бесчисленным числом способов. Связь этого обстоятельства с густотой уровней становится в особенности ясной, если рассмотреть для примера макроскопическое тело, представляющее собой «газ» из N совершенно невзаимодействующих частиц, заключенных в некотором объеме. Уровни энергии такой системы представляют собой просто суммы энергий отдельных частиц, причем энергия каждой частицы пробегает бесконечный ряд дискретных значений. Ясно, что, выбирая всеми различными способами значения N членов этой суммы, мы получим во всяком сколько-нибудь заметном конечном участке спектра огромное число возможных значений энергии системы, которые, следовательно, будут расположены очень близко друг к другу. Можно показать (см. (7,18)), вообще, что число уровней в заданном конечном интервале энергетического спектра макроскопического тела возрастает с увеличением числа содержащихся в нем частиц по экспоненциальному закону, а расстояния между уровнями выражаются числами вида Вследствие чрезвычайной густоты уровней макроскопическое тело никогда не может фактически находиться в строго стационарном состоянии. Прежде всего ясно, что значение энергии системы во всяком случае будет «размытым» на величину порядка энергии взаимодействия системы с окружающими телами. Но последняя неизмеримо велика по сравнению с расстояниями между уровнями, причем не только для «квазизамкнутых» подсистем, но и для таких систем, которые мы со всякой иной точки зрения могли бы считать строго замкнутыми. В природе, разумеется, нет полностью замкнутых систем, взаимодействие которых с любым другим телом равно в точности нулю; всякое же фактически остающееся взаимодействие, которое может быть даже настолько малым, что не отражается ни на каких других свойствах системы, будет все еще чрезвычайно велико по сравнению с исчезающе малыми интервалами ее энергетического спектра. Но и помимо этого существует другая глубокая причина, в силу которой макроскопическое тело не может фактически находиться в стационарном состоянии. Как известно из квантовой механики, состояние системы, описывающееся некоторой волновой функцией, возникает в результате некоторого процесса взаимодействия этой системы с другой системой, которая с достаточной точностью подчиняется классической механике. Особыми свойствами обладает при этом возникновение стационарного состояния. Здесь необходимо различать значение энергии системы до взаимодействия Е и энергию Е состояния, возникающего в результате взаимодействия. Как известно (см. III, § 44), неточности
Обе погрешности В силу чрезвычайной малости последних мы видим, что для приведения макроскопического тела в какое-либо определенное стационарное состояние потребовалось бы неизмеримо большое время Вообще описание состояния макроскопического тела с помощью волновой функции неосуществимо, ибо фактически возможный запас данных о состоянии такого тела далеко не соответствует полному набору данных, необходимому для построения его волновой функции. Положение здесь в известном смысле аналогично тому, которое имеет место в классической статистике, где невозможность учета начальных условий для всех частиц тела приводит к невозможности точного механического описания его поведения; аналогия, впрочем, неполная, так как невозможность полного квантово-механического описания и отсутствие волновой функции, описывающей макроскопическое тело, могут, как мы видели, иметь гораздо более глубокие основания. Квантовомеханическое описание, основанное на неполном наборе данных о системе, осуществляется, как известно, посредством так называемой матрицы плотности (см. III, § 14). Знание матрицы плотности позволяет вычислять среднее значение любой величины, характеризующей систему, а также вероятности различных значений этих величин. Неполнота описания заключается при этом в том, что результаты различного рода измерений, которые можно предсказать на основании знания матрицы плотности с некоторой долей вероятности, могли бы, возможно, быть предсказаны с большей или даже полной достоверностью на основании полного набора сведений о системе, достаточного для построения ее волновой функции. Мы не станем выписывать здесь известных из квантовой механики формул, относящихся к матрице плотности в координатном представлении, так как это представление фактически не применяется в статистике. Покажем, однако, каким образом можно непосредственно ввести матрицу плотности в энергетическом представлении, необходимом для статистических применений. Рассмотрим некоторую подсистему и введем понятие о ее «стационарных состояниях» как о состояниях, получающихся при полном пренебрежении всеми взаимодействиями данной подсистемы с окружающими частями замкнутой системы. Пусть Предположим, что в данный момент времени подсистема находится в некотором полно описанном состоянии с волновой функцией Последнюю можно разложить по образующим полную систему функциям
Среднее значение любой величины
где
— матричные элементы величины f (f — соответствующий ей оператор). Переход от полного к неполному квантовомеханическому описанию подсистемы можно рассматривать в некотором смысле как усреднение по ее различным
Совокупность величин
Такая форма записи обладает тем преимуществом, что дает возможность производить вычисления с помощью произвольного полного набора взаимно ортогональных и нормированных волновых функций: след оператора не зависит от выбора системы функций, по отношению к которым определяются матричные элементы (см. III, § 12). Аналогичным образом видоизменяются и другие квантовомеханические выражения, в которые входят величины
Так, вероятность подсистеме находиться в
и удовлетворяют условию нормировки
(соответствующему условию Необходимо подчеркнуть, что усреднение по различным состояниям, которые мы ввели с целью сделать наглядным переход от полного квантовомеханического описания к неполному, имеет лишь весьма условный смысл. В частности, было бы совершенно неправильным считать, что описание с помощью матрицы плотности соответствует тому, что подсистема может с различными вероятностями находиться в различных Состояния квантовой системы, описывающиеся волновыми функциями, иногда называют чистыми состояниями в отличие от смешанных состояний, описывающихся матрицей плотности. Следует, однако, предостеречь от неправильного понимания последних в указанном выше смысле. Усреднение с помощью статистической матрицы, определяемое формулой (5,4), имеет двоякую природу. Оно включает в себя как усреднение, связанное с вероятностным характером квантового описания даже наиболее полного самого по себе, так и статистическое усреднение, необходимость в котором возникает в результате неполноты наших сведений о рассматриваемом объекте. В случае чистого состояния остается лишь первое усреднение, в статистических же случаях всегда присутствуют оба элемента усреднения. Необходимо, однако, иметь в виду, что эти элементы отнюдь не могут быть отделены друг от друга; все усреднение производится единым образом, и его невозможно представить как результат последовательно производимых чисто квантовомеханического и чисто статистического усреднений. Статистическая матрица заменяет в квантовой статистике функцию распределения классической статистики. Все сказанное в предыдущих параграфах применительно к классической статистике по поводу практически определенного характера делаемых ею предсказаний полностью относится и к квантовой статистике. Изложенное в § 2 доказательство стремления к нулю (при увеличении числа частиц) относительных флуктуаций аддитивных физических величин вообще не использовало каких-либо особенностей, специфических для классической механики, и потому полностью относится и к квантовому случаю. Мы можем, следовательно, по-прежнему утверждать, что макроскопические величины остаются практически равными своим средним значениям. В классической статистике функция распределения В силу самой природы квантовой механики, в основанной на ней статистике речь может идти лишь о нахождении распределения вероятностей для координат или импульсов в отдельности, а не тех и других вместе, поскольку координаты и импульсы частицы вообще не могут одновременно иметь определенных значений. Искомые распределения вероятностей должны учитывать как статистическую неопределенность, так и неопределенность, присущую квантовомеханическому описанию самому по себе. Для нахождения этих распределений снова воспользуемся примененным выше способом рассуждений. Предположим сначала, что тело находится в чистом квантовом состоянии с волновой функцией (5,1). Распределение вероятностей для координат определяете» при этом квадратом модуля:
так что вероятность координатам иметь значения в данном интервале
Но по определению матричных элементов можно написать:
Поэтому
Таким образом, находим следующую формулу для распределения вероятностей по координатам:
В написанном в такой форме выражении можно пользоваться в качестве функций Далее, определим распределение вероятностей для импульсов. Квантовые состояния, в которых все импульсы имеют определенные значения, соответствуют свободному движению всех частиц. Обозначим волновые функции этих состояний посредством (q), где индекс
где Любопытно, что оба распределения — по координатам и по импульсам могут быть получены интегрированием одной и той же функции
Проинтегрировав ее по
в согласии с общим определением (5,8). Отметим также, что функция (5,10) может быть выражена через координатную матрицу плотности
Подчеркнем, однако, что сказанное отнюдь не означает, что функцию
|
1 |
Оглавление
|