Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
51. Работа системы сил. Пусть Элементарная работа Символ В выражения (1) и (2) для элементарной работы входит работа как внешних, так и внутренних сил. Обозначив через Пусть точка Будем представлять себе твердое тело как механическую систему, состоящую из сил, приложенных к точке Пусть где Воспользовавшись свойствами смешанного произведения, перепишем это выражение в виде Заменяя где Силы, зависящие от положения, в механике встречаются очень часто. Такова, например, сила, приложенная к точке, движущейся по горизонтальной прямой под действием пружины, к которой эта точка прикреплена. Важнейшим примером силового поля в природе является гравитационное поле: действие Солнца на планету данной массы вполне определяется в каждой точке пространства законом всемирного тяготения. Силовое поле называется потенциальным, если существует скалярная функция Функция Силы Элементарная работа сил стационарного потенциального поля представляет собой полный дифференциал. В самом деле, из (2) и (4) получаем Поэтому если в рассматриваемой области пространства П является однозначной функцией от ПРИМеР 2 (СИЛовоЕ ПоЛЕ уПРугой ПРужины). Пусть материальная точка движется вдоль оси Ox (рис. 48) под действием пружины, к которой она прикреплена. Если при ПРИМеР 3 (ЦЕНТРальНОЕ СИЛовоЕ ПолЕ). Силовое поле называется центральным, если сила, приложенная к движущейся в нем точке, направлена вдоль прямой, проходящей через заданный центр — неподвижную точку Поэтому В качестве конкретного примера найдем потенциал для движения точки массой Радиусы-векторы точек Введем обозначение Тогда формула (8) запишется в виде Величина В практических задачах при вычислении обобщенных сил формулами (9), как правило, не пользуются. Обычно дают системе такое виртуальное перемещение, при котором Пусть силы Отсюда следует, что в случае потенциальных сил обобщенные силы могут быть вычислены по формулам ПРИМЕР 1 (МАТЕРИАЛЬНАЯ ТОЧКА ДВИЖЕТСЯ ВДоЛЬ оСИ вместо действительного перемещения виртуальное. Последнее возможно, так как твердое тело является склерономной механической системой ( Следовательно, Здесь и для обобщенных сил получаются следующие выражения: Связи называются идеальными, если работа Условие идеальности связей не вытекает из их уравнений, оно вводится дополнительно. Рассмотрим несколько примеров идеальных связей. ПРИМЕР 1 (МАТЕРИАЛЬНАЯ ТОЧКА Р ДВИЖЕТСЯ ПО ГЛАДКОЙ ПОВЕРХНОСТИ (ДВИЖУЩЕЙСЯ ИЛИ нЕподвижной)). Виртуальные перемещения ПРИмер 2 (СвоБодноЕ тВЕРдоЕ тЕло). У свободного твердого тела нет других связей, кроме Рис. 49 тех, которые обеспечивают постоянство взаимных расстояний между точками, образующими твердое тело. Эти связи действуют на точки тела посредством сил, которые для твердого тела являются внутренними. Но, согласно п. 52, внутренние силы в случае твердого тела не совершают работу. Поэтому В дополнение к п. 18 мы можем теперь сказать, что свободное твердое тело представляет собой голономную склерономную систему с идеальными связями. ПРИМЕР 6 (ДВА ТВЕРДЫХ ТЕЛА, СОПРИКАСАЮЩИХСЯ ПРИ ДВИЖЕНИИ ГЛАДКИМИ ПОВЕРХНОСТЯМИ (РИС. 52)). Относительная скорость точ- ки соприкосновения тел лежит в общей касательной плоскости к поверхностям тел в точке их касания. В этой же плоскости лежит разность ПРИМЕР 7 (ДВА ТВЕРДЫХ ТЕЛА, СОПРИКАСАЮЩИХСЯ ПРИ ДВИЖЕНИИ АБСОЛЮТНО ШЕРОХОВАТЫМИ ПОвЕРХНОСТЯМИ). По определению это означает, что относительные скорости точек, которыми соприкасаются тела, равны нулю. Следовательно, ПРИМЕР 8 (ДВЕ МаТЕРИАЛЬНЫЕ ТОЧКИ, СОЕДИНЕННЫЕ НАТЯНУТОЙ ИДЕАльной нитью). Под идеальной нитью понимается не обладающая массой нерастяжимая нить, которая не оказывает сопротивления изменению ее формы. Для определенности будем считать, что нить перекинута через неподвижный гладкий стержень Появление новых неизвестных требует тогда привлечения новых экспериментальных данных, например законов трения скольжения. В дальнейшем мы будем рассматривать, как правило, только идеальные связи. Остановимся на следующем весьма важном обстоятельстве. Упомянутая в п. 47 первая задача динамики для случая несвободной системы может быть более подробно сформулирована так. Заданы активные силы Для решения этой задачи мы имеем
|
1 |
Оглавление
|