Главная > ТЕОРЕТИЧЕСКАЯ МЕХАНИКА (А.П.Маркеев)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1. Пространство и время. Механическое движение происходит в пространстве и времени. В теоретической механике в качестве моделей реальных пространства и времени принимаются их простейшие модели — абсолютное пространство и абсолютное время, существование которых постулируется. Абсолютные пространство и время считаются независимыми одно от другого; в этом состоит основное отличие классической модели пространства и времени от их модели в теории относительности, где пространство и время взаимосвязаны.

Предполагается, что абсолютное пространство представляет собой трехмерное, однородное и изотропное неподвижное евклидово пространство. Наблюдения показывают, что для небольших по размерам областей реального физического пространства евклидова геометрия справедлива.

Абсолютное время в теоретической механике считается непрерывно изменяющейся величиной, оно течет от прошлого к будущему. Время однородно, одинаково во всех точках пространства и не зависит от движения материи.

Движение в его геометрическом представлении имеет относительный характер: одно тело движется относительно другого, если расстояния между всеми или некоторыми точками этих тел изменяются. Для удобства исследования геометрического характера движения в кинематике можно взять вполне определенное твердое тело, т. е. тело, форма которого неизменна, и условиться считать его неподвижным. Движение других тел по отношению к этому телу будем в кинематике называть абсолютным движением. В качестве неподвижного тела отсчета обычно выбирают систему трех не лежащих в одной плоскости осей (чаще всего взаимно ортогональных), называемую системой отсчета, которая по определению считается неподвижной (абсолютной) системой отсчета или неподвижной (абсолютной) системой координат. В кинематике этот выбор произволен. В динамике такой произвол недопустим. За единицу измерения времени принимается секунда: 1c=1/86400 сут, определяемых астрономическими наблюдениями. В кинематике надо еще выбрать единицу длины, например 1 м, 1 см и т. п. Тогда основные

кинематические характеристики движения: положение, скорость, ускорение, о которых будет идти речь дальше, определяются при помощи единиц длины и времени.

Если некоторый определенный момент принять за начало отсчета времени, то всякий другой момент времени однозначно определяется соответствующим числом t, т. е. числом секунд, прошедших между начальным и рассматриваемым моментом. Это число положительно или отрицательно, смотря по тому, следует ли рассматриваемый момент времени за начальным или предшествует ему, т. е. <t<+.
2. Материальная точка. Механическая система. Под материальной точкой понимается частица материи, достаточно малая для того, чтобы ее положение и движение можно было определить как для объекта, не имеющего размеров. Это условие будет выполнено, если при изучении движения можно пренебречь размерами частицы и ее вращением. Можно или нельзя принять материальный объект за материальную точку, зависит от конкретной задачи. Например, при определении положения спутника Земли в космическом пространстве очень часто целесообразно принимать его за материальную точку; если же рассматриваются задачи, связанные с ориентацией антенн, солнечных батарей, оптических приборов, установленных на спутнике, то его нельзя считать материальной точкой, так как в вопросах ориентации нельзя пренебрегать вращением спутника и его следует рассматривать как объект, имеющий конечные, хотя и малые по сравнению с расстоянием до Земли, размеры.

В теоретической механике материальная точка представляет собой геометрическую точку, наделенную по определению механическими свойствами; эти свойства будут рассмотрены в динамике. В кинематике же материальная точка отождествляется с геометрической точкой.

Геометрическое место последовательных положений движущейся точки называется ее траекторией. Если при t1<t<t2 траектория прямая линия, то движение точки прямолинейное, в противном случае криволинейное. В частности, движение точки на интервале времени t1<t<t2 называют круговым, если на этом интервале траектория точки лежит на окружности.

Механической системой, или системой материальных точек, или, для краткости, просто системой мы будем называть выделенную каким-либо образом совокупность материальных точек.
3. Задачи кинематики. Задать движение точки (системы) значит дать способ определения положения точки (всех точек, образующих систему) в любой момент времени.
Задачи кинематики состоят в разработке способов задания движения и методов определения скорости, ускорения и других кинематических величин точек, составляющих механическую систему.

1
Оглавление
email@scask.ru