Главная > Теоретическая механика. 20 лекций. Ч. 1. Статика. Кинематика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Приведение системы пар сил к простейшему виду или сложение пар сил

Пусть к твердому телу приложены одновременно несколько пар сил с моментами , действующих в различных плоскостях. Можно ли эту систему пар привести к более простому виду? Оказывается, что можно, и ответ подсказывается следующей теоремой о сложении двух пар.

Теорема. Две пары сил, действующие в разных плоскостях, эквивалентны одной паре сил с моментом, равным геометрической сумме моментов заданных пар.

Рис. 36

Пусть пары заданы своими моментами и (рис. 36,а). Построим две плоскости, перпендикулярные этим векторам (плоскости действия пар) и, выбрав некоторый отрезок АВ на линии пересечения плоскостей за плечо, общее для обеих пар, построим соответствующие пары: (рис. 36, б).

В соответствии с определением момента пары можем написать

В точках А и В имеем сходящиеся силы. Применяя правило параллелограмма сил (аксиома 3), будем иметь:

Заданные пары оказываются эквивалентными двум силам , также образующим пару. Тем самым первая часть теоремы доказана. Вторая часть теоремы доказывается прямым вычислением момента результирующей пары:

Если число пар то, попарно складывая их в соответствии с этой теоремой, можно любое число пар привести к одной паре. В результате приходим к следующему выводу: совокупность (систему) пар сил, приложенных к абсолютно твердому телу, можно привести к одной паре с моментом, равным геометрической сумме моментов всех заданных пар.

Математически это можно записать следующим образом:

На рис. 37 дается геометрическая иллюстрация полученного вывода.

Для равновесия пар сил требуется, чтобы момент результирующей пары был равен нулю, что приводит к равенству

Рис. 37.

Это условие можно выразить в геометрической и аналитической форме. Геометрическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы векторный многоугольник, построенный из моментов всех пар, был замкнутым.

Аналитическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы алгебраические суммы проекций векторов-моментов всех пар на произвольно выбранные координатные оси Oxyz были равны нулю:

Если все пары лежат в одной плоскости, то есть образуют плоскую систему пар, получается лишь одно аналитическое условие равновесия-сумма алгебраических моментов пар равна нулю.

Вопросы для самопроверки

1. В чем состоит правило силового многоугольника? Для чего служит силовой многоугольник?

2. Как найти равнодействующую сходящихся сил аналитическим способом?

3. В чем состоит геометрическое условие равновесия сходящихся сил? Как формулируется это же условие аналитически?

4. Сформулируйте теорему о трех силах.

5. Какие задачи статики называются статически определенными и какие - статически неопределенными? Приведите пример статически неопределенной задачи.

6. Что называется парой сил?

7. Что называется моментом (вектором-моментом) пары сил? Каковы направление, модуль и точка приложения момента?

8. Что называется алгебраическим моментом пары?

9. Сформулируйте правило сложения пар, произвольным образом расположенных в пространстве.

10. В чем заключаются векторное, геометрическое и аналитическое условия равновесия системы пар сил?

1
Оглавление
email@scask.ru