Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.6. ВЗРЫВООПАСНОСТЬТехнологические операции при производстве ТРТ и его транспортировке (см. разд. 2.2 и 2.4) включают измельчение окислителей и горючих, подготовку первичных смесей, перемешивание компонентов ТРТ в смесителях, выгрузку топливной массы, отливку, отверждение, демонтаж литейных форм и механическую обработку полученных топливных заготовок. При этом топливные материалы, многие из которых обладают высокой чувствительностью, на разных стадиях технологического процесса производства ТРТ подвергаются механическим воздействиям (таким, как удар и трение), электростатическим разрядам и температурным напряжениям и, кроме того, могут испытывать действие ударных волн. Следовательно, важно уметь оценивать вероятность случайного возгорания на разных стадиях производства и при необходимости модифицировать технологический процесс с тем, чтобы свести к минимуму вероятность такого события и его последствия. Для оценки взрывоопасности пригоден хорошо апробированный подход, используемый длительное время в производстве взрывчатых веществ, сущность которого заключается в минимизации риска для персонала, количества перерабатываемого сырья и потенциальных возможностей воспламенения. При проектировании производства можно руководствоваться следующими двумя принципами: во-первых, иметь по-возможности наименьшее число операторов, подвергающихся опасности, и широко использовать дистанционное управление и телеметрию, и, во-вторых, выполнять различные технологические операции в отдельных зданиях, расположенных на безопасном расстоянии друг от друга. Однако при заливке больших РДТТ или их секций приходится иметь дело со значительными количествами топлива (например, одна секция твердотопливного ускорителя системы «Спейс Шаттл» содержит 125 000 кг топлива). Что касается воспламенения, то свойства ТРТ и взрывчатого вещества (ВВ) различны (см., например, [157]). ТРТ обладают высокими когезионными свойствами и даже при сравнительно больших напряжениях прочны и взрывобезопасны. ВВ же предназначаются для детонации при ударном инициировании, легко разрушаются и, как правило, специально изготавливаются с плотностью, меньшей теоретической, поэтому энергия удара, необходимая для инициирования, не так велика. В ТРТ скорость горения лимитируется температуропроводностью, а в ВВ необходим переход горения в детонацию. В связи с указанным различием при экспериментальной оценке чувствительности ТРТ на установках, предназначенных для исследования ВВ, возникают проблемы, связанные с интерпретацией результатов. В качестве примера можно привести испытание на удар, когда определяют высоту падения ударника на специально приготовленный образец, при которой в 50% случаев происходит его воспламенение. Скажем, для конкретного взрывчатого вещества определяемая таким образом высота составляет 25 см на специальном копре. Для смесевого топлива на основе ПХА воспламенение наступает уже при высоте в 11 см. Однако это не означает, что ТРТ более чувствительно к удару, чем ВВ. В действительности при испытаниях наблюдаются два совершенно разных процесса: дефлаграция ТРТ и детонация ВВ, причем оказывается, что инициировать детонацию многих ТРТ довольно трудно. При интерпретации результатов испытаний правильнее рассчитывать кинетическую энергию ударника и сравнивать ее с соответствующими величинами, характеризующими напряженное состояние ТРТ (измеренными или рассчитанными), которые могут возникать во время технологических операций. Риск возникновения детонации в производстве ТРТ ниже, чем в производстве ВВ, зато выше риск возгорания и пожара при механической обработке и торцевании твердотопливных заготовок. В производстве ТРТ значительный риск возникновения детонации характерен для жидких компонентов типа нитроглицерина, используемого при изготовлении двухосновных топлив. Чтобы уменьшить этот риск, такие компоненты транспортируют главным образом в желатинированном состоянии или в виде водяного раствора. Другим широко применяемым видом испытания является испытание, при котором для определения восприимчивости В В к детонации обычно используется набор пластин из инертного материала, ослабляющих инициирующую ударную волну. На основе результатов таких испытаний восприимчивость ВВ характеризуют толщиной инертного слоя в сантиметрах или числом пластин, необходимых для такого ослабления инициирующей ударной волны, при котором ВВ не детонирует. Ценность результатов таких экспериментов также повышается, если их представлять в виде минимальной энергии, необходимой для инициирования. Это позволяет количественно оценивать взрывоопасность применительно к нештатным ситуациям, возникающим в полете, или к высокоскоростным ударным воздействиям.
|
1 |
Оглавление
|