Главная > Ракетные двигатели на химическом топливе
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10.3. УПРАВЛЕНИЕ ВЕКТОРОМ ТЯГИ В РДТТ

Для управления вектором тяги в РДТТ крепить весь двигатель в подвесе нецелесообразно (за исключением, пожалуй, верньерных двигателей), поэтому в распоряжении проектировщиков

Рис. 117. Сопловые тримеры

остаются следующие решения: установка в сопле механических регулирующих поверхностей, отклоняющих газовую струю, поворот сопла или его части, вторичная инжекция и использование дополнительных управляющих сопел (подобно тому, как это делается в ЖРД).

К механическим регулирующим поверхностям относятся, кроме обсуждавшихся выше газовых рулей и дефлекторов, вдвижные и поворотные триммеры, показанные на рис. 117. Воздействие отклоняющих поверхностей на газовую струю можно приближенно рассчитать по теории сверхзвукового обтекания профиля, но для получения точных значений управляющей силы (составляющей силы тяги, перпендикулярной оси двигателя) в зависимости от величины отклонения необходимы, измерения. В работе [178] сообщается, что сопла с таким управлением газовой струей позволяют с хорошей воспроизво димостью получить максимальные боковые силы, достигающий осевой составляющей тяги. Несмотря на то что улрав ление векотором тяги с помощью подвижных механических поверхностей приводит к потерям тяги вследствие дополнительного сопротивления и требует кропотливых опытно-конструкторских и технологических работ, направленных на обеспе-: чение их прочности и целостности в условиях высоких динамических давлений, температур и тепловых потоков, они успешна применялись в таких ракетах, как «Поларис» и «Бомарк».

Поворотные сопла обеспечивают наиболее эффективное механическое управление газовой струей, поскольку они не вызы вают существенного снижения тяги и конкурентоспособны по, массовым характеристикам. Одним из примеров использований такого технического решения является применявшаяся на первой ступени ракеты «Минитмен» сборка из четырех поворотных сопел с карданным подвесом и шаровым шарниром.

Система позволяла управлять вектором тяги в плоскостях рыскания, тангажа и крена без заметных потерь тяги, причем угол отклонения газовой струи зависел линейно от поворота соплового блока.

Дальнейшее совершенствование методов управления вектором тяги связывают с более современными схемами, позволяющими исключить применение карданного подвеса и подвижных горячих металлических частей, размещаемых в сопле РДТТ. К таким схемам относятся: а) разработанная для РДТТ межорбитальных буксиров система подвески сопла типа «техрол» (см. рис. 148 в гл. 11); б) используемая в двигателе разгонного модуля система управления вектором тяги с соплом на шарнирном подвесе (см. рис. 150 в гл. 11); в) используемая в твердотопливном ускорителе ВКС «Спейс Шаттл» схема крепления сопла на гибкой опоре. Рассмотрим последнюю схему более подробно.

На рис. 118 изображена кормовая сборка ТТУ и показано расположение агрегатов системы управления вектором тяги, а на рис. 119 показано устройство гибкого соединительного узла сопла. Соединительный узел представляет собой оболочку из гибкого эластичного материала с 10 стальными кольцевыми прокладками дугообразного сечения. Первое и последнее армирующие кольца прикреплены к неподвижной части сопла, которая соединена с корпусом двигателя. Исполнительные механизмы поворотного сопла работают от вспомогательного энергоблока [114]. Он состоит из двух отдельных гидронасосных агрегатов, которые передают гидравлическую энергию на рабочие сервоцилиндры, причем один обеспечивает поворот сопла в плоскости скольжения, а другой — в плоскости бокового разворота (рис. 120). Если один из агрегатов отказывает, гидравлическая мощность другого увеличивается и он регулирует отклонение сопла в обоих направлениях. Начиная с операции отделения ускорителя вплоть до его входа в воду, приводы поддерживают сопло в нейтральном положении. Сервоцилиндры ориентированы наружу под углом 45° к осям тангажа и рыскания летательного аппарата. Отметим, что вспомогательный энергоблок, питающий приводы системы управления вектором тяги в рассматриваемом РДТТ, работает на жидком однокомпонентном топливе — гидразине, который подвергается в газогенераторе каталитическому разложению на катализаторе в форме алюминиевых таблеток, покрытых иридием.

10.3.1. ВТОРИЧНАЯ ИНЖЕКЦИЯ

Способ инжекции в сопло РДТТ вспомогательного рабочего вещества для управления вектором тяги был предложен в конце 1940-х гг. и начал применяться в серийных летательных

аппаратах в начале 1960-х гг. К используемым для этих целей веществам относятся такие инертные жидкости, как вода и фреон-113, а также жидкости, взаимодействующие с водородом в продуктах сгорания и двухкомпонентные топлива (например гидразин

Рис. 121 иллюстрирует механизм влияния инжекции на поле течения в сопле. Кроме того, что впрыскиваемая жидкость замещает часть выхлопных газов, инжекция приводит к образованию системы скачков уплотнения (скачок отрыва и индуцированный головной скачок уплотнения). Боковая составляющая реактивной силы возникает как следствие двух эффектов: во-первых, поток импульса вещества, впрыскиваемого через

Рис. 118. (см. скан) Нижняя сборка твердотопливного ускорителя ВКС «Спейс Шаттл» - кабель электропитания (12 шт.); 2 - опорный шпангоут; 3 — система управления вектором тяги (2 шт.); 4 — гаргрот; 5 — передний сопловой блок; 6 — твердотопливный заряд; 7 — стыковочный шпангоут; 8 — блок телеметрической аппаратуры; 9 — бандажные кольца; 10 — двигатели системы отделения ТТУ (4 блока); тепловой экран.

(кликните для просмотра скана)

Рис. 121. Механизм вторичной инжекции. 1 - пограничный слой; 2 — скачок отрыва; 3 — граница отрывного течения; 4 - инжекционное отверстие; 5 — головной скачок уплотнения; 6 — граница зоны инжекции.

отверстие, приводит к появлению боковой реактивной силщ во-вторых, дополнительная боковая сила создается благодаря изменению распределения давления на стенке сопла. Второй эффект увеличивает боковую составляющую по сравнению случаем, когда инжекция жидкости осуществляется не в а прямо в окружающую атмосферу. Например, при вдуве в сопло наблюдалось увеличение боковой силы в 2—3 раза [172]. Эффективность такой системы управления вектором тяги в плоскостях рыскания и тангажа для РДТТ с одним центральным соплом зависит от расположения впускного отверстия и расхода инжектируемого вещества. Величину боковой составляющей при вдуве в сопло газа или впрыске неиспаряющейся жидкости можно рассчитать другим (отличным от описанного в разд. 10.2) способом, аппроксимируя форму граничной поверхности между впрыснутым веществом и основным потоком полуцилиндром с полусферическим основанием.

Со стороны основного потока на эту поверхность действует сила давления, параллельная стенке и пропорциональная где радиус цилиндра, среднее статическое давление в ядре потока. Пренебрегая испарением, смешением и вязкими силами на граничной поверхности, запишем условие баланса между потоком количества движения впрыскиваемой жидкости, параллельным стенке, и силой давления:

где расход (считается равным асимптотическому расходу жидкости, параллельному стенке), асимптотическая

скорость инжектируемого вещества. Если предположить, что достигается в результате изоэнтропического расширения жидкости от давления торможения до давления то это известный параметр, зависящий только от и термодинамических свойств впрыскиваемого вещества. Следовательно,

Сила, нормальная к стенке, имеет три составляющие: 1) нормальная скорость на срезе впускного отверстия), 2) разность между силами давления на выходе из отверстия при наличии и в отсутствие инжекции и 3) разность между интегралом по внутренней поверхности сопла от давления на стенке при наличии и в отсутствие инжекции. При достаточно малых углах раствора сопла выражение для боковой силы имеет вид

где авых — полуугол раствора выходного раструба сопла, безразмерный коэффициент, зависящий от геометрических характеристик сопла, места расположения впускного отверстия и отношения удельных теплоемкостей вещества в выхлопной струе. Расчет по такой формуле хорошо согласуется с экспериментальными данными [178].

Если требуется управление вектором тяги в плоскости крена, то можно использовать два сопла или установить в выходном раструбе пару тонких продольных разделительных ребер и впрыскивать жидкость через соответствующие отверстия [182, 183]. Из рис. 122 видно, что отверстия обеспечивают управление по тангажу, отверстия по рысканию, а совместный впрыск или крену. В аэродинамической трубе с водой в качестве впрыскиваемой жидкости проведено параметрическое исследование распределения давления в таком сопле и его изменения в зависимости от отношения расходов вторичного и основного потоков, а также определено оптимальное положение впускных отверстий для вторичной инжекции [182, 183]. Эти результаты были затем использованы при разработке специального устройства, в котором сжигали малоразмерный заряд монотоплива на основе ПХА, а в сопло впрыскивали фреон-113 (рис. 123). Двигатель устанавливали в двух прецизионных подшипниках, позволяющих ему совершать свободное (без трения) движение в плоскости крена. Вращательный момент измеряли с помощью двух балок, приваренных перпендикулярно к переходной муфте, скрепленной с передним днищем РДТТ. Балки жестко заделывались в стенд и при приложении крутящего момента подвергались изгибу. Измерительный мост с тензодатчиками,

Рис. 122. Схематическая диаграмма центрального сопла РДТТ, обеспечиваю щего управление по трем осям [183].

размещенный на балках, давал сигнал, изменяющийся пропорционально моменту.

Результаты, представленные на рис. 124, показывают, что расположение впускных отверстий инжектируемого вещества слабо влияет на вращательный момент, давая отклонения лишь на 10—15% (это не удивительно, так как положение отверстий выбиралось на основе испытаний с холодным рабочим телом), а снижение удельного импульса, обусловленное

Рис. 123. Схема стендовой установки [183].

Рис. 124. (см. скан) Экспериментальные данные по зависимости от инжектируемого расхода отношения крутящего момента к тяге (а) и удельного импульса и дополнительной осевой составляющей тяги (б).

установкой в сопле продольных ребер, компенсируется впрыском жидкости, причем с увеличением расхода жидкости удельный импульс возрастает.

1
Оглавление
email@scask.ru