Главная > Тонкопленочные солнечные элементы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

1.3.2 Анализ состава материалов

Физические методы исследования состава материалов играют более важную роль по сравнению с методами химического анализа. Особый интерес представляют те из них, которые могут быть использованы для изучения готовых приборов.

В основе ряда методов лежит получение характеристик линейчатых спектров рентгеновского излучения. Рентгеновское излучение с дискретными флуоресцентными спектрами [51] испускают атомы вещества, возбуждаемые жестким рентгеновским излучением. Данный метод, однако, обеспечивает невысокую разрешающую способность в поперечном направлении. Предел разрешения менее 1 мкм в поперечном направлении и по глубине достигается при возбуждении рентгеновского излучения электронами с использованием электронно-зондового микроанализатора в сочетании с растровым или просвечивающим растровым электронными микроскопами [52]. Энергодисперсионный анализ испускаемого рентгеновского излучения выполняется с применением полупроводниковых детекторов, которые имеют больший угол восприятия и более высокую чувствительность, чем спектрометры с кристаллическим диспергирующим элементом. Из-за наличия эффектов упругого рассеяния электронов и вторичной флуоресценции пространственная разрешающая способность этого метода при исследовании массивных образцов ограничена величиной, приблизительно равной 1 мкм. Однако при изучении тонких образцов в просвечивающем растровом электронном микроскопе предел разрешения может быть понижен до 5 нм. Исследование материала с помощью

электронно-зондового микроанализатора в сочетании с ионным травлением позволяет определять профили распределения химических элементов. По указанным выше причинам разрешающая способность по глубине составляет около 1 мкм.

Рис. 1.10. Полученные методом оже-спектроскопии профили распределения химических элементов в тонкопленочных солнечных элементах на основе непосредственно после реакции в твердой фазе.

Повысить разрешающую способность в поперечном направлении и по глубине можно при использовании электронов низких энергий (1... 5 кэВ), стимулирующих эмиссию оже-электронов из нескольких ближайших к поверхности мономолекулярных слоев. Данный метод, называемый оже-спектроскопией, позволяет проводить исследования в сканирующем режиме (сканирующий оже-микроанализатор) и обеспечивает разрешающую способность в поперечном направлении, приблизительно равную размеру луча, и разрешающую способность по глубине порядка 1...3 нм. В сканирующем режиме возможно получение полной картины распределения концентрации химических элементов. Особым достоинством метода оже-спектроскопии является высокая эффективность анализа атомов легких элементов. При послойном удалении материала с помощью установленного в одном положении или сканирующего пучка ионов повторение элементного анализа поверхности дает информацию об изменении химического состава материала по глубине [53]. При этом необходимо принимать меры для исключения ошибок и искажений в показаниях приборов, которые возникают вследствие неоднородного распыления, каналирования и других эффектов. Типичное для солнечных элементов на основе распределение состава по глубине, определяемое методом оже-спектроскопии, показано на рис. 1.10.

В методе фотоэлектронной спектроскопии, известном в химии под названием электронной спектроскопии для химического анализа, в качестве излучения, стимулирующего эмиссию электронов из валентной зоны материалов, применяется характеристическое рентгеновское излучение, источником которого служит магниевый или алюминиевый анод. Этот метод [54], вообще говоря, не обладает высокой пространственной разрешающей

способностью, тем не менее он позволяет достичь разрешения по глубине, равного 1...3 нм, и аналогично методу оже-спектроскопии может применяться для определения градиента состава. Наиболее важное практическое значение метода электронной спектроскопии для химического анализа состоит в том, что его можно использовать для изучения сплавов и соединений, поскольку спектры эмитированных электронов несут информацию о химическом состоянии обнаруживаемых элементов.

Метод масс-спектроскопии вторичных ионов применяется для анализа ионов, испускаемых веществом, которое подвергается ионному травлению, и, следовательно, позволяет изучать распределение химических элементов по толщине образца [55]. С помощью этого метода можно обнаруживать элементы, содержащиеся в незначительном количестве (несколько миллионных долей), а также разделять изотопы.

Все три метода — оже-спектроскопия, электронная спектроскопия для химического анализа и масс-спектроскопия вторичных ионов — обычно требуют создания высокого вакуума, а проведение анализа распределения элементов сопровождается разрушением образца. Элементный анализ, основанный на обратном резерфордовском рассеянии [56], относится к неразрушающим методам, однако для получения зондирующего луча необходимо использовать ускоритель частиц.

Помимо перечисленных методов исследование тонких пленок может осуществляться с помощью стандартных аналитических методов: атомно-абсорбционного анализа, нейтронного активационного анализа и искровой спектроскопии. Эти методы, как правило, требуют разрушения образца и дают лишь усредненные характеристики пленки. Кастелем и Веделем [57] разработан метод электрохимического анализа полупроводниковых материалов, который позволяет определять толщину окисного слоя, состав и эквивалентную толщину полупроводниковой пленки. Исследование этим методом пленок основано на определении потенциала материала на конечной стадии проходящих реакций

Если заряды, необходимые для завершения реакций (1.18) и (1.19) соответственно, то стехиометрический коэффициент рассчитывается по формуле

Эквивалентная толщина пленки находится из уравнения

Здесь -молекулярная масса число Фарадея, плотность а — площадь образца.

Рис. 1.11. Зависимости потенциала от времени, измеряемые при электрохимическом анализе [57].

На интересующей исследователя конечной стадии реакций экспериментально определяется показанная на рис. 1.11 зависимость потенциала материала электрода) от времени в процессе катодного восстановления при постоянном токе в растворе уксуснокислого натрия. Типичные значения потенциалов восстановления равны: —0,16 В для для для и —1,00 В для Каждая ступенька на графике зависимости потенциала от продолжительности процесса соответствует определенному конечному химическому состоянию материала. Величины можно выразить через которые отмечены на рис. 1.11, и уравнение (1.20) принимает вид

При наличии окислов состав слоя представляет собой смесь соединений для которых реакции восстановления протекают следующим образом:

Значения определяются из соотношений

Здесь продолжительность реакций (1.23), (1.24) и (1.25) соответственно. Методом электрохимического анализа недавно были исследованы пленки [58].

В табл. 1.2 приведены сравнительные характеристики различных методов анализа состава материалов.

(см. скан)

1
Оглавление
email@scask.ru