5.2.4. Концентраторные солнечные элементы AlGaAs - GaAs
При высоких степенях концентрации, выгодных при наземном использовании солнечных элементов на основе
в концентраторных системах, требуется другая процедура оптимизации. Поскольку КПД, как правило, возрастает с увеличением интенсивности светового потока (рис. 5.11), эффективнее использовать потоки при степенях концентрации 103 и выше.
Основная проблема, возникающая при больших степенях концентрации — эффективное собирание тока, требующее, чтобы
не превышало 10 Ом•см. Слой
играет основную роль в собирании тока, поэтому необходим некоторый компромисс между его слоевым сопротивлением (толщиной и удельным сопротивлением), расстояниями между токосъемными полосками и количеством света, прошедшего через него. Критичен также характер рисунка токосъемной сетки, а многие другие параметры — контактное сопротивление, ширина токосъемных полосок, их толщины и расстояния между ними, сопротивление общего токосъема — должны быть надлежащим образом оптимизированы.
В солнечных элементах на основе
эффект Дембера проявляется незначительно (ЭДС Дембера менее
, поскольку концентрация фотогенерированных носителей (около
при
мала по сравнению с концентрацией основных. Тем не менее в конструкциях элементов, работающих при интенсивных световых потоках, свет падает со стороны
-слоя и поэтому ЭДС дембера суммируется с
Рис. 5.11. Расчетная зависимость КПД солнечного элемента на основе структуры
выращенной методом жидкофазной эпитаксии, от степени концентрации С солнечного излучения (при
) для различных значений последовательного сопротивления
Таблица 5.3. Параметры и характеристики ряда концентраторных солнечных элементов
(см. скан)
Далее будут рассмотрены три современные конструкции элементов, изготовленных методом жидкофазной эпитаксии, КПД которых при высоких степенях концентрации превышают 20% [Van der Plas е. а., 1978; Ewan е. а., 1978; Sahai е. а., 1978]. По-видимому, главное отличие между ними — толщина слоя
мкм [Sahai е. а., 1978; Van der Plas е. а., 1978]; 10 мкм [Ewan е. а., 1978] и 0,05 мкм [Sahai е. а., 1978]. Во всех типах элементов
Параметры и характеристики зтих элементов представлены в табл. 5.3.
В солнечном элементе [Sahai е. а., 1978] слой
толщиной 0,05 мкм используется только для снижения скорости поверхностной рекомбинации, а не для токосбора. Значение
(около
при нормировке к
и мощности падающего солнечного излучения
) у него выше, чем в [Ewan е. а., 1978] (около
при
или [Van der Plas е. а., 1978] (около
при
, по-видимому, из-за различия в толщине слоя
В элементе, сконструированном Сахи, токосъемная сетка контактирует непосредственно с
минуя слой
и поэтому снижается контактное сопротивление. Однако скорость поверхностной рекомбинации на границе раздела металл—
значительно выше, и это обусловливает, по-видимому, повышение
несмотря на малую площадь контакта. С этим связано некоторое снижение
в этих элементах по сравнению с теми, где токосъемная сетка контактирует со слоем
Слои
во всех трех типах предложенных элементов близки по толщине. В качестве легирующих примесей использованы атомы
или
Диффузионные длины неосновных носителей
мкм.
Наименьшим последовательным сопротивлением обладают солнечные элементы конструкции Джеймса, в которых между металлизацией и слоем широкозонного окна
расположен слой
. С помощью этого дополнительного слоя контактные сопротивления снижены до
, а полное последовательное сопротивление изменяется в пределах от
до
.
Характеристики всех трех предложенных типов концентраторных солнечных элементов, в особенности последнего, почти совпадают с расчетными значениями, полученными с помощью ЭВМ.