Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. БРОУНОВСКОЕ ДВИЖЕНИЕВведениеГлавные имена, связанные с предметом данной книги — Винер [1, 2] заложил основы строгой математической теории броуновского движения, доказав существование вполне аддитивного распределения масс
где
для подходящих функций
Формула Камерона-Мартина для якобиана параллельного переноса в пространстве путей, решение задач прогноза, данное Винером [4], и предложенное Леви представление гауссовских процессов интегралами по «белому шуму» могут рассматриваться как наиболее глубокие приложения интеграла Винера — Пэли. Ито [1] распространил этот интеграл на широкий класс (неупреждающих) функционалов
нашли простое объяснение в формуле Ито для броуновского дифференциала функции
Ито использовал свой интеграл для построения диффузии, связанной с эллиптическим дифференциальным оператором
Еще ранее попытка в этом направлении была сделана Бернштейном. Гихман [1] завершил программу Бернштейна независимо от Ито. Целые этой небольшой книги является разъяснение идей Ито в сжатой, но (хочется надеяться) удобной для чтения форме. Основные темы перечислены в оглавлении. Нововведением является использование экспоненциального мартингала
при выводе мощной оценки
Это неравенство постоянно используется ниже и, по моему опыту, приводит к наилучшим возможным оценкам (хотя зачастую их оптимальность непросто доказать). Другой новинкой (для специалистов по теории вероятностей) является применение леммы Вейля для проверки гладкости решений параболиче ских уравнений вида
|
1 |
Оглавление
|