Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
8.5. ПРОБЛЕМА НЕОДНОРОДНОСТИИзвестно, что наличие в совокупности двух групп индивидуумов (например, мужчин и женщин), средние значения изучаемых признаков которых различаются между собой, может привести к ложной корреляции. Ложная корреляция возникает тогда, когда неоднородность проявляется по тем признакам, между которыми определяют связь. На проблему неоднородности указывал Коллер [176; 1, 2]. Корреляция может быть вызвана, например, различием между полами, хотя при рассмотрении групп, состоящих только из мужчин или из женщин, связь между исследуемыми признаками отсутствует. На рис. 8.4 схематично изображен этот случай. Неоднородность данных может, наоборот, затушевать корреляцию или изменить ее знак.
Рис. 8.4. Схематичный пример возникновения корреляции из-за неоднородности данных. Между изучаемыми признаками Так как факторный анализ исходит из корреляций между переменными, то неоднородность данных оказывает влияние также на факторное решение. На это обращал внимание уже Тэрстоун [286; 5]. Далее на нескольких примерах, сконструированных как модели, показывается влияние неоднородности на факторную структуру. Для этого привлекается числовой пример, с которым мы уже ранее имели дело (табл. 7.5 и 7.6). К матрице данных рассмотренного примера добавляется вторая матрица с данными, представляющими результат наблюдения над теми же самыми 10 переменными у 200 индивидуумов. Определяется корреляционная матрица по всем данным. При этом переменные и 2-й группы наблюдений приводятся к стандартной форме. Среднее значение стандартизованных переменных равно нулю, а стандартное отклонение — единице. Коэффициенты корреляции между этими переменными равны коэффициентам корреляции, указанным в табл. 7.6, т. е. факторная структура двух корреляционных матриц известна, и они идентичны. Если ко всем значениям переменных второй группы данных прибавить постоянную величину, то их средние значения станут равными этой постоянной величине. Коэффициенты корреляции между переменными для этой группы данных не изменятся. Если принять эту постоянную величину а равной 3, то объединенная совокупность данных будет отличаться своей неоднородностью. Можно показать, что если первоначальный коэффициент корреляции между двумя переменными, принадлежащими двум группам данных, равен
где
С помощью этих двух формул были вычислены соответствующие коэффиценты корреляции по элементам корреляционной матрицы, приведенной в табл. 7.6, причем вводились различные условия, вызывающие неоднородность данных. Затем по полученным корреляционным матрицам был проведен факторный анализ, включающий в себя варимакс-вращение, и было проведено сравнение с результатом варимакс-решения в табл. 7.5. Пример 1. Прибавляем ко всем значениям первой переменной во второй группе данных постоянную Пример 2. Включаем в матрицу данных 11-ю переменную, чтобы проследить влияние неоднородности данных на факторное решение. Маркировочная переменная принимает значение, равное нулю, для индивидуума, принадлежащего к первой группе данных, и значение, равное единице, для индивидуума, принадлежащего ко второй группе данных. Таблица 8.1. Коэффициенты корреляции, изменившиеся по сравнению с приведенными в табл. 7.6 из-за неоднородности данных
Коэффициенты корреляции между этой переменной и остальными переменными, вычисленными по выборке, состоящей из 400 индивидуумов, также указаны в табл. 8.1. Результаты факторизации корреляционных матриц этих двух примеров с применением варимакс-вращения приведены в табл. 8.4, где они противопоставлены первоначальному факторному решению, полученному по однородным данным. Если причиной неоднородности является преобразование одной переменной, то факторное отображение изменяется лишь постольку, поскольку общность этой переменной уменьшается. Лишь во втором примере маркировочная переменная 11 вызывает появление третьего фактора, фактора неоднородности, и значительно его нагружает. В то время как отдельные коэффициенты корреляции при введении неоднородности уменьшились, факторное отображение изменилось незначительно. Неоднородность, обусловленная новой переменной, вызвала появление нового фактора. Пример 3. К значениям первых трех переменных второй матрицы исходных данных прибавляем постоянную Пример 4. Дополнительно к условиям примера 3 вводим маркировочную переменную 11. Корреляционная матрица этих двух примеров приведена в нижнем углу табл. 8.2. При сравнении с табл. 7.6. бросается в глаза, что из-за неоднородности данных некоторые коэффициенты корреляции изменяются очень сильно (например, коэффициент корреляции между 2-й и 3-й переменными изменил свое значение — 0,546 на + 0,524!). Несмотря на это, факторное отображение изменилось мало, что видно из табл. 8.4, так как наряду с неоднородностью еще действуют первоначальные связи между переменными и факторами. Но нагрузки переменных 1—3 на первый фактор уменьшились. В обоих последних примерах возникает третий фактор, вызванный неоднородностью данных. Он имеет значительные нагрузки от переменных 1—3, а также 11. Примеры 5 и 6. К значениям первых пяти переменных прибавляем постоянную величину Таблица 8.2. Корреляционные матрицы для примеров 3 и 4 (в нижнем левом углу) и для примеров 5 и 6 (в верхнем правом углу) (см. скан) Из табл. 8.4 видно, что в результате процедур факторного анализа Примеры 7 и 8. К значениям 1-й и 3-й переменных прибавляется постоянная Примеры 9 и 10. К значениям 1, 3 и 5-й переменных прибавляется постоянная Приведенные примеры, в которых моделировалась неоднородность, позволяют сделать следующие выводы: 1. Неоднородность данных может привести к появлению фактора, обусловленного только этой неоднородностью Таблица 8.3. Корреляционные матрицы для примеров 7 и 8 (в нижнем левом углу) и для примеров 9 и 10 (в верхнем правом углу) (см. скан) Таблица 8.4. Варимакс-решения, полученные для различных примеров (см. скан) Введение маркировочной переменной помогает выявить влияние фактора неоднородности. 2. Неоднородность данных изменяет факторное отображение. При больших изменениях в корреляционной матрице в факторном отображении совершенно неожиданно могут произойти лишь незначительные изменения. Факторный анализ менее чувствителен к влиянию неоднородности, чем отдельные коэффициенты корреляции, потому что неоднородность может появиться в факторном решении как отдельный фактор и его можно исключить. Но в некоторых случаях фактор неоднородности может совпадать с каким-либо действующим фактором. Тогда отображение этого фактора изменится. 3. Факторы, которые выделяются по матрице коэффициентов корреляций между переменными с помощью техники R, могут являться следствием как корреляции между переменными, так и неоднородностей в материале исследования. Это следует помнить при интерпретации факторов. Итак, имеются два типа факторов: факторы, которые определяются действием связей между переменными, и факторы, причиной которых является неоднородность данных. Кроме того, имеются смешанные факторы. В наших примерах процедуры факторного анализа осуществлялись вслепую, но мы смогли выявить все типы факторов и определить влияние неоднородности в каждом случае. Если бы анализировались связи между индивидуумами по выборке переменных (т. е. использовалась бы техника Q для определения независимых друг от друга группировок индивидуумов), то результаты были бы аналогичные, а именно получили бы факторы, характеризующие различные группировки, и фактор, вызванный неоднородностью данных. Такой результат не является неожиданным, так как матрица исходных данных для обеих техник одна и та же. В зависимости от постановки задачи неоднородность может рассматриваться как фактор, искажающий результаты исследования, который нужно исключать, либо, наоборот, как фактор, вводимый специально для того, чтобы проследить изменение факторного решения. В любом случае неоднородность в данных не является препятствием проведения факторного анализа. Неоднородность как раз может быть выявлена благодаря факторному анализу и исключена из решения, особенно если для признака неоднородности подобрать маркировочную переменную. В принципе оба типа факторов всегда присутствуют в экспериментальном материале.
|
1 |
Оглавление
|