Главная > ВОЛНОВЫЕ ПРОЦЕССЫ. ОСНОВНЫЕ ЗАКОНЫ (И.Е.Иродов)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Пример пространственной дифракционной решетки — это кристаллическая решетка твердого тела. Частицы, образующие эту решетку, играют роль упорядоченно расположенных центров, когерентно рассеивающих падающую на них волну.

Рассмотрение дифракции на упорядоченных структурах проще всего начать с дифракции монохроматического излучения на прямолинейной цепочке, состоящей из одинаковых равноотстоящих частиц (например, атомов). Пусть расстояние между соседними частицами (период структуры) равно d и параллельный пучок излучения с длиной волны λ падает на такую цепочку под углом скольжения α0 (рис. 5.31). Разность хода между лучами 1 и 2 , рассеянными соседними частицами под углом α, равна, как
Рис. 5.31

видно из этого рисунка, Δ=ADCB=d(cosαcosα0). Углы α=αm, под которыми образуются фраунгоферовы максимумы m-го порядка, определяются условием, при котором эта разность хода равна целому числу длин волн:
d(cosαmcosα0)=±mλ,m=0,1,2,

Применения дифракции ренттеновских лучей. Дифракция рентгеновских лучей от кристаллов получила развитие в двух направлениях: рентгеновская спектроскопия (исследование спектрального состава этого излучения) и рентгеноструктурный анализ (изучение структуры кристаллов).

Спектральный состав излучения, т. е. измерение его длин волн, можно определить с помощью формулы (5.36), найдя направления на максимумы при дифракции на кристалле с известной структурой.
В рентгеноструктурном анализе разработаны два метода:
1. Метод Лауэ, в котором узкий пучок рентгеновского излучения направляется на исследуемый монокристалл. Для каждой системы кристаллических плоскостей в излучении находится длина волны, при которой выполняется условие (5.36). В результате на помещенной за кристаллом фотопластинке получается система пятен-максимумов, так называемая лауэграмма. Взаимное расположение пятен отражает симметрию кристалла. А по расстояниям между максимумами и их интенсивности можно расшифровать структуру данного кристалла.
2. Метод Дебая-Шерера, в котором используется узкий пучок монохроматического рентгеновского излучениия и образец в виде поликристалла. Исследуемый кристалл предварительно измельчают в порошок (очень мелкие кристаллики), и из него прессуется образец в виде стерженька. В большом количестве беспорядочно ориентированных кристалликов найдется множество таких, для которых условие (5.36) окажется выполненным, и дифрагированный пучок будет образовывать конус направлений — свой для каждой системы межплоскостных расстояний d и порядка дифракции m. Рентгенограмма образца, полученная по этому методу — дебайграмма — имеет вид системы концентрических колец. Ее расшифровка также позволяет определить структуру кристалла.

1
Оглавление
email@scask.ru