Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Когерентность поляризованных волн. Если на кристаллическую пластинку, вырезанную параллельно оптической оси, нормально направить пучок естественного света, то из пластинки выйдут две волны с взаимно ортогональными плоскостями поляризации. Естественный свет — результат излучения различных независимых атомов источника света, испускающих отдельные некоррелированные друг с другом цуги волн. Эти цуги участвуют в образовании обыкновенной и необыкновенной волн в кристалле. Однако вклад каждого отдельного цуга в эти две волны, вообще говоря, не одинаков. Этот вклад больше в ту волну, плоскость поляризации которой составляет меньший угол с плоскостью поляризации данного цуга. Другими словами, обыкновенная и необыкновенная волны в основном порождаются разными цугами, входящими в состав естественного света. Поэтому обыкновенная и необыкновенная волны, распространяющиеся в одноосном кристалле и выходящие из него (при падении естественного света), некогерентны. Однако обе волны можно сделать когерентными, если на пути естественного света установить поляризатор Интерференция поляризованных волн. Сказанного еще недостаточно, если мы задались целью наблюдать интерференцию этих волн. Дело в том, что интерференция никогда не наблюдается, если складываемые волны поляризованы во взаимно перпендикулярных плоскостях. Выход простой: поставить на пути вышедшего из пластинки света еще один поляризатор. Он сведет два взаимно ортогональных когерентных колебания к одной плоскости. Интерференция будет обеспечена. Ее результат окажется в зависимости от оптической разности хода складываемых волн. Итак, схема наблюдения интерференции поляризованных волн должна быть такой, как показано на рис. 6.19. Здесь Рис. 6.19 Далее мы рассмотрим вопрос об интенсивности I’ света, прошедшего через эту систему в двух наиболее простых и практически важных случаях, связанных с взаимной ориентацией плоскостей пропускания поляризаторов Теперь перейдем к рассмотрению двух частных случаев, когда плоскости пропускания обоих поляризаторов параллельны друг другу ( Результат интерференции этих волн будет зависеть, как уже говорилось, от разности фаз Таким образом, при Рис. 6.20 , б достаточно ясно показывает, что происходит с проходяцим светом в этом случае. Но здесь надо обратить внимание на тот факт, что векторы Тогда в формуле (6.12) надо вместо Из формул (6.12) и (6.13) следует, что интенсивности Если свет монохроматический и толщина кристаллической пластинки всюду одинакова, мы получим на выходе равномерную освещенность без характерных для интерференционной картины чередующихся светлых и темных полос. Здесь интерференция проявляет себя в перераспределении световой энергии между взаимно ортогональными плоскостями. Действительно, если например при параллельных плоскостях пропускания поляризаторов мы получаем максимум освещенности, то достаточно повернуть поляризатор Интенсивность выходящего из поляризатора то изменения Приведем сводную табличку (6.15), где указаны условия, при которых интенсивности В этой табличке достаточно запомнить результаты для Отметим, что во втором случае, когда поляризаторы скрещены ( До сих пор мы рассматривали интерференцию в плоскопараллельной пластинке, где интерференция проявляла себя в изменении интенсивности равномерно освещенного поля зрения (после поляризатора Заметим, что в белом свете картина будет весьма красочной: она будет состоять из разных оттенков, периодически повторяющихся в пространстве вдоль клина.
|
1 |
Оглавление
|