Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Механизм рассеяния света. С классической точки зрения рассеяние света состоит в том, что световая волна, проходящая через вещество, вызывает колебания электронов в атомах (молекулах). Эти электроны возбуждают вторичные волны, распространяющиеся по всем направлениям. При этом вторичные волны оказываются когерентными между собой и поэтому интерферируют. Теоретический расчет приводит к следующему выводу: в случае однородной среды вторичные волны полностью гасят друг друга во всех направлениях, кроме направления распространения первичной волны (это было показано в конце стр. 163). В силу этого перераспределения света по направлениям, т. е. рассеяния света в однородной среде, не происходит. Иначе обстоит дело при распространении света в неоднородной среде. В этом случае световые волны, дифрагируя на мелких неоднородностях среды, дают дифракционную картину в виде довольно равномерного распределения интенсивности по всем направлениям. Это явление и называют рассеянием свеma. Примерами таких сред с явно выраженной оптической неоднородностью могут служить так называемые мутные среды. К их числу относятся аэрозоли (дым, туман), коллоидные растворы, матовые стекла и др., содержащие мелкие частицы, показатель преломления которых отличается от показателя преломления окружающей среды. Закон Рэлея. Рассеяние света в мутных средах на неоднородностях, размеры которых малы по сравнению с длиной волны Причина такого явления состоит в том, что электроны, совершающие вынужденные колебания в атомах электрически изотропной частицы малого размера (не более Эту зависимость называют законом Рэлея. Из него следует, что коротковолновая часть спектра рассеивается значительно более интенсивно, нежели длинноволновая. Голубой свет, частота которого примерно в 1,5 раза больше частоты красного света, рассеивается почти в 5 раз интенсивнее, чем красный. Это и объясняет голубой цвет рассеянного света и красноватый — прошедшего. Поляризация рассеянного света. При рассеяннии естественного света в мутной среде зависимость интенсивности рассеянного света от угла рассеяния где Если размеры неоднородностей сравнимы с длиной волны света, то электроны в различных местах неоднородности колеблются уже не синфазно. Это усложняет явление рассеяния и приводит к другим закономерностям: закон Рэлея нарушается (интенсивность рассеянного света становится пропорциональной всего лишь квадрату частоты, Если же размеры неоднородностей значительно больше световой длины волны, то спектральный состав рассеянного света практически совпадает со спектральным составом первичного пучка. Этим объясняется, например, белый цвет облаков. Молекулярное рассеяние. Даже тщательно очищеннье от посторонних примесей и загрязнений жидкости и газы в некоторой степени рассеивают свет. М. Смолуховский (1908) выяснил, что причиной оптических неоднородностей в этом случае являются флуктуации плотности. Имеются в виду отклонения в пределах малых объемов плотности от ее среднего значения, возникающие в процессе хаотического теплового движения молекул среды. Рассеяние света, обусловленное этими флуктуациями плотности, называют молекулярным рассеянием. Молекулярным рассеянием объясняется голубой цвет неба. Непрерывно возникающие в атмосфере флуктуации плотности в малых объемах приводят согласно закону Рэлея к тому, что синие и голубые составляющие солнечного света рассеиваются сильнее, чем желтые и красные. При восходе и заходе Солнца прямой солнечный свет проходит через большую толщу атмосферы, и при этом большая доля коротковолновой части спектра теряется на рассеяние. Из прямого света до поверхности Земли доходит преимущественно красная составляющая спектра. Вот почему при восходе и заходе Солнце кажется красным. Аналогично объясняется и красный цвет зари. Эффект, связанный с молекулярным рассеянием света, зависит от температуры: с ее ростом он увеличивается, и это подтверждает эксперимент. Ослабление узкого светового пучка. В результате рассеяния интенсивность узкого светового пучка убывает в направлении распространения быстрее, чем в случае одного лишь поглощения. Поэтому для мутной среды в выражении (7.18) вместо коэффициента поглощения где Еще раз отметим, что эта зависимость относится к узкому световому пучку.
|
1 |
Оглавление
|