Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
I. Однако постепенно наши планы расширились в основном вследствие активного использования численных экспериментов и методов компьютерной визуализации в сочетании с аналитическими вычислениями. В конце концов у нас сформировался совершенно новый взгляд на одну из самых классических областей механики, допускающий обобщение на всю динамику. В предисловии мы провозглашаем манифест компьютерной динамики, развитие и применение которой к динамическим проблемам теории волчков читатель найдет на протяжении всей книги. Компьютерные исследования в динамике, или просто компьютерную динамику, мы выделяем в отдельную область науки, которая устанавливает общие закономерности движения реальных физических систем при помощи ряда численных методов и алгоритмов. Каждый из этих методов обладает своими особенностями (устойчивость и пр.) и обладает внутренними параметрами (типа шага и точности). Поэтому результаты такого исследования, конечно, имеют лишь косвенное отношение к реальности. Однако аналогичные заключения можно сделать и относительно обычных аналитических (или сугубо математической) методов, требующих на каждом шаге строгих доказательств. При этом многие физически очевидные факты могут привести к неразрешимым математическим проблемам (которых особенно много в нелинейной динамике и математической теории хаоса). Мы здесь отметим только проблемы с доказательством эргодичности, вычислением энтропии, оценками малого параметра и применимостью КАМ-теории и пр. Решение этих проблем, тем не менее, нисколько не продвинет наше понимание замечательных законо- мерностей, которые мы наблюдаем, следя за развитием хаоса в конкретных системах. В этой книге естественно завершена классическая ветвь динамики твердого тела, связанная с поиском возможных интегрируемых случаев. Вероятно, что другие случаи и интегралы, которые могут быть найдены в будущем, уже никогда не вызовут того внимания, как уже найденные и приведенные здесь. Классики пытались их использовать для понимания движения и делали это с переменным успехом. В динамике твердого тела увлечение геометрическими интерпретациями движения, восходящими к Пуансо, временами сменялось аналитическими исследованиями, большинство из которых, к сожалению, совершенно не было востребовано ни физиками, ни инженерами и вскоре становилось доступным лишь специалистам. Мы, возможно, в книге несколько пренебрегли доказательствами и точными формулировками. Мы использовали одновременно как достижения топологии, анализа и компьютерные эксперименты для получения достаточно полного представления о движении. Сложно сказать, достигли ли мы поставленной цели, но несомненно, что даже самые классические случаи (типа Лагранжа, Ковалевской и Горячева-Чаплыгина) приобрели в таком подходе второе рождение, вышли за рамки сухих вычислений и стали вполне осязаемыми. Возможно, что такой и должна быть основная цель механики — предъявить некоторый алгоритм, по которому можно разобраться со всем многообразием движений и наглядно представить себе каждое конкретное движение и его особенности. В этой книге мы пытаемся возродить традиции математической литературы времен Эйлера, который сам, по выражению Якоби [183], «хотя и рассматривает всегда только частные случаи, но подбирает их так удачно, что позже найденный общий метод по большой части прибавляет к его результатам очень мало или ничего». Таким образом, если считать установленными законы природы, приводящие к некоторой системе дифференциальных уравнений, то для ее анализа компьютерный и аналитический методы являются дополняющими друг друга. Здесь мы подчеркиваем отличие нашей точки зрения от широко распространенной и состоящей в том, что «настоящая наука» является аналитической, а компьютер способен дать только иллюстрации аналитическим методам и толчок для формулировок новых теорем. Это, конечно, также правильно, но лишь является побочным продуктом компьютерных исследований, которые имеют свою внутреннюю логику и систему описания физических феноменов. Систематическое развитие компьютерных иссле- дований, открывающее новые области компьютерной (или «виртуальной») динамики — дело ближайшего будущего. В качестве исторического ракурса, или, скорее, курьеза, иллюстрирующего излишнюю веру в силу логического метода, заметим, что Лейбниц и Декарт в своих работах, прежде чем развивать собственно математические методы, «доказывали» существование движения и даже бога. II. Кроме идеи компьютерной динамики в книге мы старались отразить самые современные методы пуассоновой динамики и геометрии, теории групп и алгебр Ли, лишь намеченные в нашей предыдущей книге «Пуассоновы структуры и алгебры Ли в гамильтоновой механике», которая, как нам кажется, имела определенный успех. В развитии этих методов динамика твердого тела играет особую роль. В некотором смысле она представляет собой полигон для испытания новых средств математики и в настоящее время трудно оценить ее значение, особенно для развития многих разделов топологии и нелинейных пуассоновых структур, неголономной геометрии, теории симметрий и тензорных инвариантов. III. При проверке почти всех современных и классических случаев интегрируемости использовалась система аналитических вычислений MAPLE. При этом некоторые уже известные ранее результаты оказались не совсем корректными, а другие были значительно упрощены. За рамками книги оказались вопросы устойчивости частных движений и большинство прикладных и технических вопросов, достаточно полное изложение которых требует отдельной монографии. Тем не менее даже физик и инженер может извлечь из книги понимание общего формализма записи основных динамических уравнений, а также основных аспектов регулярного и хаотического поведения в динамике твердого тела. По этим вопросам книга может рассматриваться как справочник, в котором, тем не менее, мы стараемся пояснить вывод основных результатов, а иногда приводим полные доказательства.
|
1 |
Оглавление
|