Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. Движение твердого тела с неподвижной точкой в суперпозиции постоянных однородных силовых полей Как показано в [31] любое количество полей в этом случае может быть сведено к трем взаимно перпендикулярным полям. Функция Гамильтона имеет вид где 2. Свободное твердое тело в квадратичном потенциале Пусть твердое тело движется в одном поле с квадратичным потенциалом здесь В — постоянная симметрическая матрица, Представляя радиус-вектор точки в неподвижном пространстве в виде Здесь Для поля тяжести Таким образом, при этом поступательное и вращательное движения разделяются, причем обе системы могут быть проинтегрированы в квадратурах [21] (гл. 3, §4) (что заведомо выполняется при равенстве инертной и гравитационной масс, т. е. для поля тяжести). Заметим также, что вращательное и поступательное движение разделяется для произвольного поля, если центр приведения поля совпадает с центром масс. 3. Движение тела с неподвижной точкой во вращающейся системе координат Пусть твердое тело совершает движение, при котором одна из его точек вращается равномерно с угловой скоростью Рис. 8. Движение твердого тела с неподвижной точкой во вращающейся системе координат. Конфигурационное пространство системы — группа Положение точки твердого тела с радиус-вектором где где где здесь Гироскоп и маятник Фуко. В этом случае а гамильтониан может быть представлен в виде В этом случае удобно воспользоваться переменными неподвижного пространства (4.19). Выбирая соответствующие единицы измерения длины и массы и обозначая вектор Система на нулевой постоянной интеграла Спутник на круговой орбите вокруг Земли. Центр масс совпадает с началом координат вращающейся системы, т. е. где С различными динамическими эффектами в движении спутника по круговой орбите можно ознакомиться по книге [11]. 4. Относительное движение твердого тела с неподвижной точкой Пусть твердое тело со связанной с ним точкой Обозначая соответственно через Здесь Кинетический момент и гамильтониан системы (6.12) определяются следующим образом а уравнения движения имеют вид (5.8). Примером подобных систем могут служить гироскопы и подвесы, размещенные на летательных аппаратах и искусственных спутниках, совершающих заданное движение. 5. Движение твердого тела по гладкой плоскости Кроме уравнений Эйлера-Пуассона, интересным механическим примером, в котором отделяются уравнения, описывающие эволюцию векторов Вообще говоря, в абсолютном движении система имеет пять степеней свободы, но в силу того, что реакция плоскости при идеальном скольжении ей перпендикулярна, сохраняются две проекции импульса системы на эту плоскость. Выбирая систему координат, жестко связанную с телом с началом в центре масс (тем самым исключая его горизонтальное равномерное прямолинейное смещение) для движения в потенциальном поле где I — тензор инерции тела относительно центра масс, где тел уравнение (6.15) допускает несколько решений После преобразования Лежандра из (6.14) получаем где Для поля тяжести потенциальная энергия тела может быть представлена в виде Рис. 10. Гироскоп в кардановом подвесе. Внешняя рамка карданова подвеса 6. Гироскоп в кардановом подвесе Гироскоп в кардановом подвесе представляет собой систему нескольких тел, соединенных между собой с помощью цилиндрических шарниров (см. рис. 10) [119]. Рассмотрим случай, наиболее часто встречающийся в технике, при этом оси и осью Функция Лагранжа гироскопа в потенциальном поле может быть записана в виде где Гамильтонова форма системы (6.18) может быть получена при помощи преобразования Лежандра (4.14). При этом функция Гамильтона системы в общем случае слишком громоздка, приведем ее вид при условии, что тело динамически симметрично относительно оси где Исторический комментарий. Маятник и гироскоп Фуко были предложены известным франџузским физиком Леоном Фуко (1819-1868) в качестве приборов, с помощью которых можно наблюдать вращение Земли относительно абсолютного пространства. Идея с маятником оказалась наиболее плодотворной и в качестве демонстраџии приводится в школьном курсе физики. Тем не менее полный анализ нелинейной модели — обычно рассматриваются только малые колебания — до сих пор отсутствует. Она является неинтегрируемой. Одна из первых попыток учета конечности амплитуды размаха принадлежит Каммерлинг-Оннесу, открывшему сверхпроводимость. Опыты с гироскопом, поставленные Фуко (1852 г.), не привели к вполне удовлетворительному результату — гироскоп слишком быстро терял скорость вследствие трения и возникала хаотическая преџессия оси вращения. По замыслу — ось симметричного гироскопа должна была оставаться постоянной в неподвижном пространстве, что делало бы возможным измерить врашение Земли. Тем не менее в проџессе создания своего гироскопа Фуко предложил ряд технических новшеств, одним из которых является использование карданова подвеса, который, кстати, до Д. Кардано (1501-1576) был известен франџузскому архитектору У. де Гонкуру в XIII веке. Фуко также заметил, что если лишить гироскоп одной степени свободы, то ось его вращения стремится совпасть с угловой скоростью переносного враџения основания подвеса, связанного с угловой скоростью вращения Земли. Это позволяет определить направление на Северный полюс и широту места установки прибора. Анализируя два характерных положения двухстепенного гироскопа относительно поверхности вращающейся Земли, Фуко изобрел два новых прибора — гирокомпас и гироширот, который нашли свое техническое воплощение лишь в конџе XIX века и начале XX века (Обри, Сперри, Аншютџ и др.) в конструкџиях управления торпедами и летательными аппаратами. 7. Движение твердого тела в идеальной несжимаемой жидкости (уравнения Кирхгофа) Здесь масс тела, может быть выбрана равнсй нулю. Уравнения движения имеют вид (5.8). Отметим, что обычно уравнениями Кирхгофа называют частный случай (6.20), в котором 8. Падение тяжелого тела в жидкости, уравнения Чаплыгина Рассмотрим движение в жидкости в однородном поле тяжести тела, для которого три взаимно перпендикулярные плоскости симметрии пересекаются в центре масс [176]. Несложно показать, что в этом случае центр масс тела совпадает с центром масс вытесняемого объема жидкости. Гамильтониан системы имеет вид Как можно показать из уравнений (5.8), полный импульс системы определяется уравнением где Пусть начальный толчок равен нулю: где, как ясно из предыдущего изложения, А — тензор присоединенных моментов инерции, Уравнения движения системы (6.22) называются уравнениями Чапльгина [176]. Существует два частных случая системы (6.22), для которых уравнения движения могут быть сведены к уравнению маятникового типа Неинтегрируемость системы (6.22), как в общем случае, так и в осесимметричном и плоском случаях показана в работе [96]. Комментарии. 1. Уравнения системы (6.22) были впервые получены С. А. Чаплыгиным в его студенческом сочинении ( 1890 г.), опубликованном существенно позже в полном собрании его сочинений (1933 г., т. 1). Возможно, что от публикаџии результата Чаплыгин воздержался вследствие того, что не смог явно проинтегрировать эти уравнения. Кроме того, В. А. Стеклов получил эти уравнения независимо и опубликовал их в своей известной книге [160] (1893 г.), где также привел некоторые качественные результаты о поведении тела. 2. В работе [175] С. А. Чаплыгин указал также случай, когда сила тяжести уравновешена силой Архимеда (средняя плотность тела равна плотности жидкости), но џентр масс тела не совпадает с џентром масс вытесненного объема жидкости. При этом тело находится под действием пары сил, и его полный импульс в абсолютном пространстве сохраняется: где где
|
1 |
Оглавление
|