Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1. Уравнения Пуанкаре Наиболее естественные и удобные для исследований формы уравнений движения твердого тела могут быть получены из общих уравнений динамики в квазикоординатах. Лагранжева форма этих уравнений была установлена А. Пуанкаре [255], а гамильтонова — Н. Г. Четаевым [181]. Их возможные обобщения для неголономной ситуации рассматривались в [91, 154]. В динамике твердого тела уравнения Пуанкаре-Четаева приводят к гамильтоновым уравнениям с линейным структурным тензором, т. е. к только что рассматривавшейся структуре Ли-Пуассона (см. §1). Приведем здесь свой вывод уравнений Пуанкаре и Пуанкаре-Четаева, т. к. их обсуждение отсутствует в доступной литературе. Рассмотрим уравнения движения лагранжевой динамической системы, определенной обобщенными избыточными координатами При этом предполагается, что все голономные связи учтены, то есть В случае Величины Предположим, что векторные поля образуют замкнутую систему В случае и называются уравнениями Пуанкаре, совместно с (2.1) они образуют полную систему уравнений движения. В формуле (2.4) дифференцирование вдоль векторного поля Если функция Лагранжа является однородной квадратичной формой от ее угловых скоростей (например, кинетическая энергия), то Пуанкаре получил свои уравнения, используя вариационный принцип Гамильтона [255]. Приведем вывод уравнений (2.4) непосредственно из уравнений Эйлера Лагранжа для случая, когда число компонент квазискорости Введем локальные координаты Согласно (2.1), (2.2) справедливы следующие соотношения где Используя (2.6), находим Подставим (2.8) в уравнения (2.5) и умножим их на матриџу После приведения подобных членов получим уравнения (2.4). 2. Уравнения Пуанкаре-Четаева Переменные Чтобы получить замкнутую систему, надо добавить к (2.10) уравнения (2.1) в форме Система уравнений (2.10), (2.11) является гамильтоновой с, вообще говоря, вырожденной скобкой Пуассона, определяемой для произвольных функций Нетрудно проверить, что эта скобка удовлетворяет всем необходимым условиям Исторический комментарий. Для уравнений динамики в форме (2.10), (2.11) Н.Г. Четаев [181] также развивал теорию интегрирования, аналогичную методу Гамильтона — Якоби. Однако, если в каноническом случае успех в разделении переменных связан с особо замечательными системами координат на конфигураџионном пространстве (типа эллиптических или сфероконических), то для алгебраической формы записи (2.10), (2.11) таким путем удается исследовать только тривиальные симметрии (имеющиеся, например, в случае Лагранжа (см. гл. 2)). По этой же причине не получили дальнейшего развития его соображения относительно обобщений теоремы Рауса, связанных с наличием циклического интеграла и понижением порядка. Для уравнений Пуанкаре — Четаева при наличии первых интегралов (типа циклических) в гл. 4, §§ 1,2 предложена новая проџедура редукџии, позволяющая получить уравнения приведенной системы в наиболее простой алгебраической форме и приводящая в некоторых случаях к нелинейным скобкам Пуассона. 3. Уравнения на группах Ли Конфигурационное пространство в динамике твердого тела, как правило, является некоторой естественной группой Ли. Например, при вращении твердого тела вокруг неподвижной точки — это группа В качестве базиса векторных полей Если гамильтониан Если гамильтониан Уравнения Гамильтона на группе Ли в естественной канонической структуре для задач динамики твердого тела (все группы в которой унимодулярны) всегда обладают стандартной инвариантной мерой. Это — аналог теоремы Лиувилля о соленоидальности канонического гамильтонова потока. Детальный вывод уравнений движения твердого тела в произвольном потенциальном силовом поле рассматривается в § 4. Более сложные уравнения, вывод которых использует основные принципы гидродинамики, описывающие движение твердого тела в жидкости, а также тела, имеющего полости, содержащие жидкость, рассматриваются в гл. 4. Комментарии Таким образом, уравнения Пуанкаре и Пуанкаре — Четаева — это лишь удобный аппарат для записи в произвольной системе переменных, в том числе избыточной, уравнений движения системы в лагранжевой и гамильтоновой форме. При этом возможность такого представления связана с существованием у системы тензорного инварианта — пуассоновой структуры, координатная запись которой зависит от выбора переменных, причем для избыточных переменных пуассонова структура будет заведомо вырождена. Следует сказать, что лагранжева система, функция Лагранжа которой невырождена по скоростям, заведомо обладает этим тензорным инвариантом. Интересно заметить, что связь между лагранжевой и гамильтоновой формой понятна большинству механиков только в канонической записи. Так в книге [21] гамильтонова форма уравнений динамики твердого тела считается заведомо установленной из некоторых не вполне естественных соображений, в частности, со ссылкой на работу [133], в которой реально автор, не зная общего формализма динамических уравнений, даже переоткрывает углы Эйлера и сопряженные им импульсы. Далее в [21] доказывается несколько странных теорем, что из гамильтоновой формы можно получить лагранжеву, при этом, конечно, возникает некоторая путаница, так как пуассонова коммутация компонент момента с импульсами и направляющими косинусами одинакова, и одни и те же уравнения Кирхгофа можно представлять себе как часть импульсных уравнений на группе Сложная координатная форма записи ньютоновских уравнений динамики спутника используется в [11], где даже наличие интеграла энергии становится неочевидным. Даже в замечательной книге [97] доказывается утверждение о «негамильтоновости» уравнений Эйлера-Пуанкаре (рассматриваемых в отрыве от по- зиџионных переменных), что связывается с отсутствием инвариантной меры, имеющей определенную аналитическую структуру, отсутствуюшую, например, у разрешимых (неунимодулярных) групп Здесь следует упомянуть также книгу [249] и вообще работы этого же стиля (Дж. Марсден, А. Вейнстейн и до.), где из-за излишней формализаџии как форм динамических уравнений, так и проџедуры редукџии даже простые задачи требуют большого умственного напряжения. А немного более сложные механические проблемы остаются просто за рамками такого подхода.
|
1 |
Оглавление
|