Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше
Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике
14.1.3. ВИНЕРОВСКАЯ ФИЛЬТРАЦИЯ И СЛУЧАЙНОЕ ИЗОБРАЖЕНИЕ
Винеровский
фильтр с частотной характеристикой (14.1.13), учитывающий аддитивный шум, по
существу полностью игнорирует пространственную корреляцию, присущую идеальному
изображению. Использование априорных данных о статистических свойствах
пространственной корреляции часто позволяет существенно улучшить результат
реставрации. Такое обобщение винеровского фильтра основано на предположении,
что идеальное изображение является реализацией двумерного случайного процесса с
известным энергетическим спектром . Для упрощения аналитических
выражений также принимается, что процесс, представляющий изображение, имеет
нулевое среднее. В рамках всех этих допущений частотная характеристика
реставрирующего фильтра, обеспечивающего минимальную среднеквадратическую
ошибку, имеет вид
, (14.1.14а)
. (14.1.14б)
В
формуле (14.1.14б) частотная характеристика реставрирующего фильтра выражена
через отношение сигнал/шум (С/Ш) для энергетических спектров
. (14.1.15)
Если
идеальное изображение не обладает пространственной корреляцией, его энергетический
спектр принимает единичное значение во всем диапазоне пространственных частот и
соотношение (14.1.14) переходит в (14.1.13).