Главная > Цифровая обработка изображений. Книга 2
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

14.8. МЕТОДЫ РЕСТАВРАЦИИ С ИСПОЛЬЗОВАНИЕМ ОГРАНИЧЕНИЙ

Для повышения качества исправленных изображений в моделях с плохой обусловленностью было предложено [19] вводить ограничения в виде равенств и ограничения в виде неравенств. Можно, например, задавать значения отдельных элементов, отношения отдельных элементов, сумму части или всех элементов или же предельно допустимые уровни элементов.

В переопределенной линейной модели могут использоваться ограничения в виде системы линейных уравнений

,               (14.8.1)

где  - заданная матрица размера  ранга , описывающая ограничения,  - оценка при наличии ограничений,  - известный вектор размера . Минимизация взвешенной ошибки  с учетом ограничений (14.8.1)  позволяет получить следующую оценку [28, стр. 100]:

,      (14.8.2)

где - решение без ограничений. Ковариационная матрица оптимального решения определяется как

,               (14.8.3)

где  - (положительно определенная) ковариационная матрица без ограничений. Можно показать, что вторая матрица в выражении (14.8.3) является неотрицательно определенной матрицей ранга . Следовательно, каждый диагональный элемент матрицы  меньше или равен соответствующему элементу , а дисперсия каждого элемента вектора оценки с ограничениями меньше дисперсии соответствующего элемента вектора оценки без ограничений. Однако это не означает, что оценка с ограничениями всегда лучше оценки без ограничений. Более того, первая может оказаться смещенной, вторая - нет. Смещение решения при наличии ограничений

    (14.8.4)

будет иметь нулевое значение тогда и только тогда, когда ограничения удовлетворяются истинным вектором , т. е. тогда и только тогда, когда . В этом случае система ограничений может рассматриваться как совокупность дополнительных наблюдаемых полей, не пораженных шумом. При решении задач реставрации изображений можно ввести разумное ограничение, состоящее в том, что сумма значений элементов исправленного изображения должна равняться некоторому усредненному значению, например среднему уровню наблюдаемого изображения. Однако такое ограничение оказывается не очень полезным для преодоления плохой обусловленности, так как влияет только на одну степень свободы в векторном пространстве размерности .

Часто доступна априорная информация в виде ограничений-неравенств, обусловливающих значения элементов изображения. Физика процесса формирования изображений такова, что элементы изображения должны иметь неотрицательные значения. Часто известна верхняя граница этих значений, поскольку при преобразовании изображений в цифровую форму на каждый элемент отводится конечное число двоичных разрядов. Кроме того, вводятся вполне очевидные ограничения по уровню, связанные с необходимостью подогнать контрастный диапазон реставрированного изображения к динамическому диапазону дисплея. Один из возможных подходов - линейное масштабирование контраста исправленного изображения с учетом заданного динамического диапазона дисплея. Прибегать к этой процедуре обычно нежелательно, поскольку появление даже нескольких элементов с ненормально высокой яркостью приводит к снижению контраста всего изображения. Следует также учитывать, что контрастное масштабирование обычно влияет на среднюю яркость исправленного изображения. Другой распространенный метод воспроизведения изображений предусматривает ограничение уровня элементов в случае превышения порогового уровня дисплея. Хотя этот метод превосходит метод контрастного масштабирования по субъективному качеству изображения, он может дать смещение оценки.

Если реставрация изображений должна осуществляться с априорно вводимыми ограничениями уровней элементов, то лучше всего учесть эти ограничения непосредственно при реставрации; введение ограничений после завершения процедуры реставрации дает худший результат. Известно несколько методов реставрации изображений с использованием ограничений в виде неравенств.

Рассмотрим общий случай реставрации с ограничениями, когда вектор оценки  должен удовлетворять неравенствам

,         (14.8.5)

где  и  - векторы, учитывающие верхний и нижний пределы ограничения оценки элементов. В случае реставрации по критерию наименьших квадратов квадратическую ошибку следует минимизировать с учетом ограничения (14.8.5). Такой подход приводит к задаче квадратического программирования (19). При использовании абсолютной ошибки задачу реставрации можно сформулировать как задачу линейного программирования [34,35].

Рис. 14.8.1. Сравнение изображений, реставрированных без ограничений и с ограничениями. Нерезкость внесена с помощью импульсного отклика гауссовой формы . Случай переопределенной модели. Наблюдаемое изображение с шумом (дисперсия равна 10 уровням шкалы):  а - нерезкое изображение: б - изображение а, исправленное без ограничений; в - изображение а, исправленное с ограничениями в виде неравенств.

Априорная информация, включающая ограничения в виде неравенств, может обеспечить существенное уменьшение неопределенности элементов исправленного изображения; однако, как и в случае использования ограничений-равенств, оценка может получить неизвестное смещение.

Рис. 14.8.1 иллюстрирует качество реставрации изображения с гауссовой нерезкостью, соответствующей переопределенной модели (см. гл. 13). Изображение на рис. 14.8.1, б реставрировано методом псевдообращения матриц, а изображение на рис. 14.8.1, в - с использованием ограничений-неравенств [19], требующих, чтобы яркость каждого элемента исправленного изображения находилась в диапазоне 0—255. Введение ограничений обеспечивает существенное повышение качества реставрации. К сожалению, решение задачи квадратического программирования, которое использовано в рассматриваемом примере, требует выполнения большого объема вычислений. Распространить принцип «грубой силы» на рассматриваемый метод не представляется возможным.

Предложен ряд способов улучшения метода реставрации изображений с использованием ограничений. Один простой подход, основанный на идее гомоморфной фильтрации, заключается в логарифмировании каждого наблюдаемого изображения. Потенцирование соответствующих оценок автоматически приводит к строго положительному результату. Берг [5, 36, 37] и Фриден [5, 38, 39] разработали методы реставрации с ограничением в виде условия положительности, основанные на принципе максимума энтропии, который впервые был применен для оценивания плотности вероятности по ее моментам. Метод Берга, дающий решение в замкнутой форме, при наличии шума иногда приводит к неустойчивым оценкам. Итеративный метод Фридена с успехом был применен для обработки одномерных сигналов и небольших изображений. Джанссон и др. [40] на основе результатов более ранней работы Ван Циттера [41] разработали итеративный метод реставрации, в котором используются итерационные уравнения вида [5, 40]

,                          (14.8.6)

,                  (14.8.7)

где индекс  указывает номер итерации, а . Диагональная матрица  определяется как

,              (14.8.8)

где  - постоянная. Когда значение элемента исправленного изображения приближается к верхнему или нижнему пределу ограничения, соответствующий взвешивающий коэффициент  стремится к нулю, благодаря чему обеспечивается устойчивость этого члена оценки. Метод дал хорошие результаты при обработке одномерных сигналов. Хуанг и др. [42, 43] предложили модифицированный метод для реставрации изображений с ограничениями — так называемый метод проекций, предусматривающий итеративное решение системы уравнений  численными методами. На каждом этапе промежуточные оценки подвергаются ограничению по уровню в соответствии с установленным динамическим диапазоном.

Реставрация изображений с ограничениями - развивающаяся область исследований. Здесь ведутся настойчивые поиски эффективных вычислительных методов, минимизирующих ошибки оценивания при наличии дополнительных ограничений.

 

1
Оглавление
email@scask.ru