Главная > Курс физики. Том I. Механика, акустика, молекулярная физика, термодинамика
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 115. Формула Лапласа. Явления капиллярности и смачивания

Резиновый шар, мыльный пузырь могут оставаться в равновесии лишь при условии, чтобы давление воздуха внутри них было на определенную величину больше давления наружного воздуха. Вычислим превышение внутреннего давления над наружным.

Пусть мыльный пузырь имеет радиус и пусть избыток давления внутри него над наружным давлением равняется Чтобы увеличить объем пузыря на исчезающе малую величину нужно затратить работу которая идет на увеличение свободной энергии поверхности пузыря и равна где а — поверхностное натяжение мыльной пленки, величина одной из поверхностей пузыря (разностью радиусов внутренней и наружной поверхностей для простоты пренебрегаем). Итак, имеем уравнение

Но

поэтому

с другой стороны,

отсюда

Подставляя выражения для в вышеприведенное уравнение, получаем:

отсюда

По закону противодействия такую же величину имеет давление, производимое пузырем на воздух, находящийся внутри него.

Если вместо пузыря, имеющего две поверхностные пленки, будем рассматривать каплю, у которой только одна поверхность, то придем к выводу, что поверхностная пленка производит на внутренность капли давление, равное

где радиус капли.

Вообще вследствие кривизны поверхностного слоя жидкости создается избыточное давление: положительное под выпуклой поверхностью и отрицательное под вогнутой поверхностью. Таким образом, при наличии кривизны поверхностный слой жидкости становится источником силы, направленной от выпуклой стороны слоя к вогнутой стороне.

Рис. 226. К пояснению формулы Лапласа.

Лаплас дал формулу для избыточного давления пригодную для случая, когда поверхность жидкости имеет любую форму, допускаемую физической природой жидкого состояния. Эта формула Лапласа имеет следующий вид:

где имеют следующее значение. В какой-нибудь точке поверхности жидкости (рис. 226) нужно вообразить нормаль и через эту нормаль провести две взаимно перпендикулярные плоскости, которые пересекут поверхность жидкости по кривым и Радиусы кривизны этих кривых в точке и обозначаются через

Легко видеть, что из формулы Лапласа для плоской поверхности жидкости получается а для шаровой поверхности как это мы вывели раньше.

Если бы поверхность была «седлообразной», то кривые и лежали бы по разные стороны от касательной плоскости в

точке тогда радиусы имели бы разные знаки. В геометрии доказывается, что у так называемых минимальных поверхностей т. е. имеющих при данном контуре наименьшую возможную площадь, сумма всюду равняется нулю. Как раз этим свойством обладают мыльные пленки, затягивающие какой-нибудь проволочный контур.

Пена есть собрание пузырей, имеющих общие стенки. Кривизна такой стенки (определяемая выражением + пропорциональна разности давлений по обе стороны стенки.

Если конец чистой стеклянной палочки погрузить в чистую воду и вынуть палочку, то увидим на конце ее висящую каплю воды. Очевидно, что молекулы воды сильнее притягиваются к молекулам стекла, чем друг к другу.

Подобно этому медной палочкой можно поднять каплю ртути. В таких случаях говорят, что твердое тело смачивается жидкостью.

Иное будет, если опустим чистую стеклянную палочку в чистую ртуть или если стеклянную палочку, покрытую жиром, опустим в воду: здесь палочка, вынутая из жидкости, не уносит ни капли этой последней. В этих случаях говорят, что жидкость не смачивает твердого тела.

Рис. 227. Стрелками показаны направления сил, с которыми поверхностный слой действует на находящийся под ним столбик жидкости.

Если погрузить в воду узкую чистую стеклянную трубку, то вода в трубке поднимется на известную высоту вопреки силе тяжести (рис. 227, а). Узкие трубки называются капиллярными, или капиллярами, а отсюда и самое явление носит название капиллярности. Жидкости, смачивающие стенки капиллярной трубки, претерпевают капиллярное поднятие. Жидкости, не смачивающие стенок капилляра (например, ртуть в стеклянной трубке), претерпевают, как показано на рис. 227, б, опускание. Капиллярные поднятия и опускания бывают тем больше, чем уже капилляры.

Капиллярные поднятия и опускания вызываются избыточным давлением, которое возникает вследствие искривления поверхности жидкости. В самом деле, в трубке, которая смачивается жидкостью, жидкость образует вогнутый мениск. По сказанному

в предыдущем параграфе поверхность такого мениска будет развивать силу, направленную снизу вверх, и эта сила будет поддерживать в трубке столбик жидкости вопреки действию тяжести. Наоборот, в трубке, которая не смачивается жидкостью, получится выпуклый мениск; он даст силу, направленную вниз и, следовательно, понижающую уровень жидкости,

Выведем зависимость между поверхностным натяжением а жидкости, ее плотностью радиусом трубки и высотой столбика, поднявшегося в трубке. Пусть жидкость «вполне смачивает» стенки трубки (как вода стеклянную трубку), так что в месте встречи с трубкой поверхность жидкости является касательной к поверхности трубки. Это касание имеет место по контуру, длина которого есть Благодаря поверхностному натяжению контур будет развивать силу и эта сила, приложенная к столбику, будет уравновешивать силу его тяжести, равную где ускорение тяжести.

Таким образом,

откуда

т. е. высота капиллярного поднятия пропорциональна поверхностному натяжению и обратно пропорциональна радиусу трубки и плотности жидкости.

Ту же формулу (11) для капиллярного поднятия можно получить как следствие формулы Лапласа (10) или (в рассматриваемом случае симметричной поверхности) формулы (9). Можно рассуждать так: в жидкости под вогнутой поверхностью давление понижено на величину поэтому при равновесии, когда давление на уровне свободной поверхности жидкости, налитой в сосуд, равно давлению жидкости в капилляре на том же уровне, столб жидкости в капилляре должен иметь такую высоту, чтобы его давление уравновешивало дефицит давления, создаваемого вогнутостью поверхности мениска. Стало быть, откуда и получается формула (11).

Рассуждая аналогично, убеждаемся, что когда жидкость «совершенно не смачивает» стенок капилляра, при равновесии она будет находиться в капилляре на уровне, пониженном на высоту, которая определяется той же формулой (11).

Измерение капиллярного поднятия является одним из простых способов определения величины а.

На рис. 228 изображено капиллярное поднятие жидкости между двумя пластинками, составляющими двугранный угол. Нетрудно сообразить, что поднявшаяся жидкость будет сверху ограничена

гиперболой; асимптотами этой гиперболы будут служить ребра двугранного угла и линия, лежащая на уровне жидкости в сосуде.

Рассмотрим условия равновесия жидкости, соприкасающейся с твердой стенкой (рис. 229). Обозначим избыточную свободную энергию каждого квадратного сантиметра поверхности твердого тела 3, граничащего с вакуумом или газом 2, через Когда слой какой-либо жидкости смачивая поверхность твердого тела, растекается по ней, поверхность раздела твердое тело — газ заменяется поверхностью раздела твердое тело — жидкость, причем свободная энергия этой новой поверхности будет уже иная, Очевидно, что убыль свободной энергии каждого квадратного сантиметра поверхности твердого тела равна работе сил, под действием которых 1 см периметра жидкой пленки перемещается на расстояние в 1 см по направлению, перпендикулярному к периметру пленки. Стало быть, разность можно рассматривать как силу, приложенную к 1 см периметра жидкой пленки, действующую касательно к поверхности твердого тела и побуждающую жидкость продвигаться по поверхности твердого тела. Однако растекание жидкости по поверхности твердого тела сопровождается увеличением поверхности между жидкостью 1 и вакуумом или газом 2, чему пр епятствует повер хностное натяжение жидкости В общем случае при неполном смачивании жидкостью твердого тела сила (как это показано на рис. 229, а) направлена под некоторым углом к поверхности твердого тела; этот угол называют краевым углом. Мы видим, таким образом, что жидкость, граничащая с твердым телом, будет находиться в равновесии тогда, когда

Отсюда находим, что краевой угол, под которым при равновесии свободная поверхность жидкости встречает поверхность

Рис. 228. Капиллярное поднятие жидкости между пластинками, составляющими двугранный угол.

Рис. 229. Жидкость смачивает твердую стенку (а); не смачивает твердую стенку

твердого тела, определяется формулой

По смыслу вывода формулы (12) ясно, что эта формула остается справедливой и для случая, когда жидкость не смачивает твердого тела (рис. 229, б); тогда краевой угол будет тупым; отсутствие смачивания означает, что (т. е. свободная энергия твердого тела на его поверхности раздела с вакуумом или газом меньше, чем на поверхности раздела того же тела с жидкостью; иначе говоря, в этом случае при продвижении жидкости по поверхности твердого тела работа не будет производиться, но, напротив, работу нужно будет затратить, чтобы осуществить такое продвижение жидкости).

При полном смачивании краевой угол а при полном отсутствии смачивания Краевой угол зависит от природы соприкасающихся веществ и от температуры. Если наклонять стенку сосуда, краевой угол от этого не меняется.

Формула (12) объясняет форму капли, лежащей на горизонтальной плоскости. На твердой подставке, которая смачивается жидкостью, капля принимает форму, изображенную на рис. 230; если же подставка не смачивается, то получается форма капли, изображенная на рис. 231, где краевой угол — тупой.

Рис. 230. Капля смачивающей жидкости.

Рис. 231. Капля несмачивающей жидкости.

Совершенно чистое стекло вполне смачивается водой, этиловым спиртом, метиловым спиртом, хлороформом, бензолом. Для ртути на чистом стекле краевой угол составляет 52° (для свежеобразованной капли 41°), для скипидара 17°, для эфира 16°.

Когда жидкость вполне смачивает подставку, то капли не возникает, а жидкость растекается по всей поверхности. Это происходит, например, с каплей воды на абсолютно чистой стеклянной пластинке. Но обыкновенно стеклянная пластинка бывает несколько загрязнена, что препятствует растеканию капли и создает измеримый краевой угол.

Рис. 232. Масляная капля на воде

Соображения, на основе которых была получена формула можно применить также и к случаю, когда вместо твердого тела мы имеем вторую жидкость, например, когда масляная капля плавает на поверхности воды (рис. 232). Но в этом случае направления сил Уже не противоположны; при соприкосновении жидкости с твердым телом нормальная составляющая поверхностного

натяжения уравновешивается сопротивлением твердой стенки, а при соприкосновении жидкостей это не имеет места; поэтому в данном случае условие равновесия должно быть записано иначе, а именно как равенство полной силы и геометрической суммы (взятой с обратным знаком) сил Приравнивая квадрат величины квадрату геометрической суммы вычисленной по известному правилу определения диагонали параллелограмма (построенного на векторах получаем:

Отсюда получаем формулу для внутреннего краевого угла 6 жидкой капли:

Из этой формулы и прямо из рис. 232), в частности, следует, что когда равновесие для плавающей капли не может щлеть место, и капля жидкости 3 будет растекаться по поверхности жидкости 1. Неравенство означает, что свободная энергия поверхности жидкости 1 превышает сумму свободных энергий новообразующихся при растекании капли поверхностей раздела 3—2 и 3—1. Тот факт, что в этом случае происходит растекание капли, является частным следствием общего закона термодинамики (§ 105), гласящего, что при всех изотермических процессах, происходящих самопроизвольно, суммарная свободная энергия системы всегда убывает и равновесие достигается тогда, когда свободная энергия системы становится минимальной.

Если, например, на воде плавает оливковое масло, то дин/см, дин/см и дан/см. Таким образом, здесь поверхностное натяжение на границе воздуха и воды больше суммы обоих поверхностных натяжений, которые имеет масло по отношению как к воздуху, так и к воде; мы будем поэтому иметь неограниченное растекание капли. Толщина масляного слоя дойдет до размеров одной молекулы (примерно см), а затем слой станет распадаться. Но если вода загрязнена, то ее поверхностное натяжение делается меньше, и тогда на поверхности может оставаться большая масляная капля, после того как по воде распространился очень тонкий слой масла.

Жидкость, проникающая вследствие действия молекулярных сил в тонкий зазор между двумя поверхностями твердых тел, оказывает на эти поверхности расклинивающее действие. Расклинивающее действие тонких слоев жидкости было экспериментально доказано искусными опытами проф. Б. В. Дерягина, который разработал также теорию этого явления и объяснил на основе расклинивающего действия жидкости эффект Ребиндера (§ 46).

Categories

1
Оглавление
email@scask.ru