Главная > Курс физики. Том I. Механика, акустика, молекулярная физика, термодинамика
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 67. Интенсивность звука

Силой, или интенсивностью, звука в проходящей (т. е. нестоячей) волне называется количество энергии, ежесекундно протекающей через площадки, перпендикулярной к направлению распространения волны.

Интенсивность (силу) звука измеряют в или же в единицах, в 10 раз больших, а именно в (микроватт — миллионная доля ватта).

Вычисления показывают, что интенсивность звука равна отношению квадрата амплитуды избыточного давления к удвоенному акустическому сопротивлению среды:

Это справедливо как для плоских, так и для сферических волн. В случае плоских волн, если пренебречь потерями, связанными с внутренним трением, сила звука не должна изменяться с расстоянием. В случае сферических волн амплитуды смещения, скорости частиц и избыточного давления убывают как величины, обратные первой степени расстояния от источника звука. Следовательно, в случае сферических волн сила звука убывает обратно пропорционально квадрату расстояния от источника звука.

Для измерения силы звука обычно применяют микрофоны (их устройство описано во втором томе курса, в главе об электрических колебаниях). Для измерения силы звука применяют также диск Рэлея — это тонкий небольшой диск (изготовленный из пластинки слюды толщиной в 2—3 сотых миллиметра) диаметром в подвешенный на тончайшей нити. В поле звуковых волн на диск

действует вращающая пара, момент которой пропорционален силе звука и не зависит от частоты звука. Эта вращающая пара стремится повернуть диск так, чтобы плоскость его была перпендикулярна к направлению распространения звуковых волн. Обычно диск Рэлея подвешивают в звуковом поле под углом в 45° к направлению распространения волн и измеряют силу звука, определяя угол поворота диска.

Для определения силы звука можно также измерять давление которое звуковые волны оказывают на твердую стенку. Это давление пропорционально силе звука:

здесь есть отношение теплоемкости среды при постоянном давлении к теплоемкости при постоянном объеме, с — скорость звука.

Сопоставляя приведенную формулу с формулой (6), мы видим, что давление, оказываемое звуковыми волнами на твердую стенку, пропорционально квадрату амплитуды избыточного давления и обратно пропорционально плотности среды.

Определение интенсивности звука, данное в начале настоящего параграфа, утрачивает смысл для стоячей волны. Действительно, если амплитуды давления в прямой и отраженной волнах равны между собой, то через площадку, поставленную перпендикулярно к оси волны, протекают в противоположных направлениях равные количества энергии. Поэтому результирующий поток энергии через площадку равен нулю. В этом случае интенсивность звука характеризуют плотностью звуковой энергии, т. е. энергией, содержащейся в звукового поля.

Для вычисления плотности звуковой энергии в поле плоской проходящей волны представим себе цилиндрический объем сечением в и длиной, численно равной скорости звука ось цилиндра пусть совпадает с направлением распространения волны. Ясно, что общее количество энергии, содержащейся внутри цилиндра, численно равно интенсивности звука С другой стороны, при сечении в объем цилиндра численно равен таким образом, плотность звуковой энергии оказывается равной

Представление о движении энергии и важнейшие в настоящее время понятия о плотности энергии в точке среды и о скорости движения энергии были введены в науку в 1874 г. Н. А. Умовым в его докторской диссертации, где, в частности, дано строгое обоснование уравнения (7). Десятью годами позже идеи Умова были развиты английским физиком Пойнтингом в применении к электромагнитным волнам.

Поясним, как вычисляется интенсивность звука в отраженной звуковой волне и в преломленной волне.

Законы отражения и преломления звуковых волн подобны законам отражения и преломления света. При отражении звуковой волны угол, образуемый направлением врлны с нормалью к отражающей поверхности (угол падения), равен углу, образуемому направлением отраженной волны с той же нормалью (углу отражения).

При переходе звуковой волны из одной среды в другую угол падения и угол преломления связаны между собой соотношением

где - скорости звука в первой и во второй средах.

Если интенсивность звука в первой среде, то при нормальном падении волн на поверхность раздела интенсивность звука во второй среде будет:

где, как было доказано Рэлеем, коэффициент проникновения звука определяется формулой

Очевидно, что коэффициент отражения равен

Из формулы Рэлея мы видим, что чем больше различаются акустические сопротивления сред тем меньшая доля звуковой энергии проникает через поверхность раздела сред. Нетрудно сообразить, что когда акустическое сопротивление второй среды весьма велико в сравнении с акустическим сопротивлением первой среды, то

Такой случай имеет место при переходе звука из воздуха в массу воды или в толщу бетона, дерева; акустическое сопротивление этих сред в несколько тысяч раз больше акустического сопротивления воздуха. Стало быть, при нормальном падении звука из воздуха на массивы воды, бетона, дерева в эти среды проникает не более тысячной доли интенсивности звука. Тем не менее бетонная или деревянная стена может оказаться весьма звукопроводной, если она тонка; в этом случае стена воспринимает и передает упругие колебания, как большая мембрана. Приведенная выше формула для такого случая неприменима.

Отдельные слои атмосферного воздуха вследствие неодинакового температурного состояния могут обладать различным акустическим сопротивлением; от поверхности раздела таких слоев воздуха происходит отражение звука. Этим объясняется, что дальность слышимости звуков в атмосфере подвержена значительным колебаниям. Дальность слышимости в зависимости от степени однородности воздуха может изменяться в 10 и более раз. Погода (дождь, снег, туман) не влияет на звукопроводность воздуха. В ясный день и во время густого тумана слышимость может быть одинаковой. И, напротив, в дни, когда погода видимым образом одинакова, звукопроводность воздуха может оказаться весьма различной, если степень однородности слоев воздуха неодинакова.

Одной из важных задач акустики является выяснение условий, влияющих на интенсивность звука акустических излучателей. Когда колеблющееся тело-излучатель отдает звуковую энергию во внешнюю среду, это тело совершает работу против реакции звукового поля т. е. против сил, обусловленных избыточным давлением в излучаемой волне и тормозящих колебательное движение излучателя.

Вычисление показывает, что когда излучатель имеет размеры, большие сравнительно с длиной волны, он излучает плоскую волну, причем мощность звукового излучения равна половине произведения амплитуды скорости колебательного движения излучателя на площадь излучателя 5 и на акустическое сопротивление среды:

Если же излучатель мал сравнительно с длиной волны, то он излучает сферическую волну, причем мощность излучения в этом случае определяется формулой

Для какого-либо излучателя заданных размеров (например, для колеблющегося диска площадью первая из двух приведенных формул для мощности определяет мощность излучения высоких частот (коротких волн), вторая — мощность излучения низких частот (длинных волн).

Часто требуется чтобы в области высоких, средних и низких частот излучатель имел одинаковую мощность (этим качеством должны обладать мембраны патефонов, диффузоры громкоговорителей). Но при заданной амплитуде колебательного движения излучатели малого размера при удовлетворительной мощности излучения высоких звуков имеют весьма малую мощность излучения низких звуков. Это делает их в музыкальном отношении неполноценными.

Из сказанного ясны недостатки излучателей малого размера. Излучатели большого размера обладают тем существенным неудобством, что их масса значительна и, стало быть, для сообщения им колебательного движения с требуемой амплитудой необходимо прилагать очень большие силы. Поэтому с технической точки зрения желательно поставить излучатель малого размера в условия наиболее выгодного акустического режима.

Эта задача может быть решена с помощью специального устройства, соединяющего излучатель с открытым пространством, а именно с помощью рупора. Рупор представляет собой постепенно расширяющуюся трубу, в узком конце которой (в горле) колеблется излучатель. Жесткие стенки рупора не дают звуковой волне «расползаться» в стороны. Таким образом, фронт волны сохраняет более или менее плоскую форму, что делает первую из приведенных выше формул

для мощности излучения применимой не только в области высоких, но также и в области низких частот.

Обычно изучение интенсивности звука приходится проводить для замкнутых помещений. Исследование звука в замкнутых помещениях важно для проектирования аудиторий, театров, концертных залов и т. п. и для исправления акустических дефектов помещений, построенных без предварительного акустического расчета. Отрасль техники, занимающаяся этими вопросами, носит название архитектурной акустики.

Основной особенностью акустических процессов в замкнутых помещениях является наличие многократных отражений звука от ограничивающих поверхностей (стен, потолка). В помещении средних размеров звуковая волна претерпевает несколько сот отражений, прежде чем энергия ее уменьшится до порога слышимости В больших помещениях звук достаточной силы может быть слышен после выключения источника в течение нескольких десятков секунд за счет существования отраженных волн, движущихся во всевозможных направлениях. Совершенно очевидно, что такое постепенное замирание звука, с одной стороны, выгодно, так как звук усиливается за счет энергии отраженных волн; однако, с другой стороны, чрезмерно медленное замирание может существенно ухудшить восприятие связного звучания (речи, музыки) вследствие того, что каждая новая часть связного контекста (например, каждый новый слог речи) перекрывается еще не отзвучавшими предыдущими. Уже из этих беглых рассуждений понятно, что для создания хорошей слышимости время отзвука в аудитории должно иметь некоторую оптимальную величину.

При каждом отражении часть энергии теряется вследствие поглощения. Отношение поглощенной энергии звука к падающей называют коэффициентом поглощения звука. Приводим его значения для ряда случаев:

Очевидно, что чем больше коэффициент поглощения звука, характерный для стен какого-либо помещения, и чем меньше размеры этого помещения, тем короче время отзвука.

Рис. 162. Оптимальная реверберация для помещений различного объема.

Время отзвука, в течение которого интенсивность звука убывает до порога слышимости, зависит не только от свойств помещения, но и от начальной силы звука. Чтобы внести определенность в расчет акустических свойств аудиторий, принято (совершенно условно) рассчитывать время, в течение которого плотность звуковой энергии уменьшается до одной миллионной доли начального значения. Это время называют временем стандартной реверберации, или просто реверберацией.

Оптимальное значение реверберации, при котором слышимость может считаться наилучшей, многократно определялось экспериментально. В малых

помещениях (объемом не свыше оптимальной является реверберация 1,06 сек. При дальнейшем увеличении объема оптимальная реверберация растет пропорционально как это представлено на рис. 162. В помещениях с плохими акустическими свойствами (слишком «гулких») реверберация вместо оптимального значения в 1—2 сек. составляет 3—5 сек.

1
Оглавление
email@scask.ru