Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 49. Симметрия координатных волновых функций системы двух электронов. Атом гелияЭлектроны являются фермионами, поэтому волновая функция для системы двух электронов должна быть антисимметричной
Разложим функцию
Первые три слагаемых в этой сумме соответствуют состояниям с полным спином единица, а четвертое описывает состояние с полным спином нуль. Введенные соотношением (1) функции
т. е. координатные волновые функции для состояний со спином единица являются антисимметричными, а для состояний со спином нуль — симметричными. Применим этот результат к атому гелия. Оператор Шредингера для атома гелия в пренебрежении спиновыми взаимодействиями имеет вид
Если
то и координатные функции
в подпространствах симметричных или антисимметричных функций. Ясно, что решений уравнения (2) в каждом из таких подпространств меньше, чем в пространстве Мы видим, что уровни энергии атома гелия зависят от полного спина даже в пренебрежении спиновыми взаимодействиями в операторе Шредингера. Эта зависимость является следствием принципа тождественности и возникает через симметрию координатных волновых функций. Можно доказать, что основному состоянию атома гелия соответствует симметричная координатная волновая функция, т. е. спин атома гелия в основном состоянии равен нулю. Интересно отметить, что переходы с испусканием или поглощением квантов между состояниями с
|
1 |
Оглавление
|